首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19715篇
  免费   1872篇
  国内免费   2779篇
  24366篇
  2024年   96篇
  2023年   388篇
  2022年   877篇
  2021年   1354篇
  2020年   987篇
  2019年   1197篇
  2018年   1034篇
  2017年   783篇
  2016年   955篇
  2015年   1375篇
  2014年   1663篇
  2013年   1603篇
  2012年   1939篇
  2011年   1721篇
  2010年   1093篇
  2009年   920篇
  2008年   984篇
  2007年   858篇
  2006年   715篇
  2005年   639篇
  2004年   568篇
  2003年   492篇
  2002年   447篇
  2001年   296篇
  2000年   243篇
  1999年   209篇
  1998年   160篇
  1997年   112篇
  1996年   95篇
  1995年   85篇
  1994年   83篇
  1993年   65篇
  1992年   46篇
  1991年   40篇
  1990年   45篇
  1989年   46篇
  1988年   29篇
  1987年   28篇
  1986年   23篇
  1985年   18篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   3篇
  1980年   5篇
  1979年   3篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
22.
Iron is one of the most important minor elements in the shell of bivalves. This study was designed to investigate the involvement of ferritin, the principal protein for iron storage, in shell formation. A novel ferritin cDNA from the pearl oyster (Pinctada fucata) was isolated and characterized. The ferritin cDNA encodes a 206 amino acid polypeptide, which shares high similarity with snail soma ferritin and the H-chains of mammalian ferritins. Oyster ferritin mRNA shows the highest level of expression in the mantle, the organ for shell formation. In situ hybridization analysis revealed that oyster ferritin mRNA is expressed at the highest level at the mantle fold, a region essential for metal accumulation and contributes to metal incorporation into the shell. Taken together, these results suggest that ferritin is involved in shell formation by iron storage. The identification and characterization of oyster ferritin also helps to further understand the structural and functional properties of molluscan ferritins.  相似文献   
23.
A cDNA clone was isolated after difference screening from cotyledons of two-week cold-treated Ammopiptanthus mongolicus. The full-length cDNA sequence [designated as AmCIP (A. mongolicus cold-induced protein) gene] was 806 bp long and contained a 465 bp open reading frame (ORF) encoding a 16.6 kD protein of 154 amino acids. Bioinformatic analyses indicated that CIP belongs to dehydrin family with the features of high hydrophilicity, a helix K-segment, a long Gly-rich region and a phosphorylatable tract of Ser as well as deficiency in Cys and Trp. The expression of CIP gene increased after two weeks of cold treatment and more expression was detected in radicle than in cotyledon. And PCR amplification of the AmCIP gene from genome of A. mongolicus revealed this gene has no intron. Function prediction suggested this protein seems to protect the stabilization of membrane structure and prevent macromolecular coagulation or sequestrate calcium ions by association or disassociation with membrane under low temperature conditions.  相似文献   
24.
25.
26.
Fusarium wilt caused by Fusarium oxysporum f. sp. niveum (Fon) is the most serious soil-borne disease in the world and has become the main limiting factor of watermelon production. Reliable and quick detection and quantification of Fon are essential in the early stages of infection for control of watermelon Fusarium wilt. Traditional detection and identification tests are laborious and cannot efficiently quantify Fon isolates. In this work, a real-time polymerase chain reaction (PCR) assay has been described to accurately identify and quantify Fon in watermelon plants and soil. The FONRT-18 specific primer set which was designed based on identified specific sequence amplified a specific 172 bp band from Fon and no amplification from the other formae speciales of Fusarium oxysporum tested. The detection limits with primers were 1.26 pg/μl genomic DNA of Fon, 0.2 pg/ng total plant DNA in inoculated plant, and 50 conidia/g soil. The PCR assay could also evaluate the relationships between the disease index and Fon DNA quantity in watermelon plants and soil. The assay was further used to estimate the Fon content in soil after disinfection with CaCN2. The real-time PCR method is rapid, accurate and reliable for monitoring and quantification analysis of Fon in watermelon plants and soil. It can be applied to the study of disease diagnosis, plant-pathogen interactions, and effective management.  相似文献   
27.
崔荣峰  孟征 《植物学报》2007,24(1):31-41
MADS-box基因家族成员作为转录调控因子在被子植物花发育调控中发挥关键作用。本文以模式植物拟南芥(Arabidopsis thaliana) 和水稻 (Oryza sativa)为例, 综述了近10年来对被子植物(又称有花植物)两大主要类群——核心真 双子叶植物和单子叶植物花同源异型MADS-box基因的研究成果, 分析MADS-box基因在被子植物中的功能保守性和多样性,同时探讨双子叶植物花发育的ABCDE模型在多大程度上适用于单子叶植物。  相似文献   
28.
29.
Physiological integration has been documented in many clonal plants growing under resource heterogeneity. Little is still known about the response of physiological integration to heterogeneous ultraviolet-B radiation. In this paper, the changes in intensity of physiological integration and of physiological parameters under homogeneous and heterogeneous ultraviolet-B radiation (280-315 nm) were measured in order to test the hypothesis that in addition to resource integration a defensive integration in Trifolium repens might exist as well. For this purpose, homogeneous and heterogeneous ultraviolet-B radiation was applied to pairs of connected and severed ramets of the stoloniferous herb Trifolium repens. Changes in intensity of water and nutrient integration were followed with acid fuchsin dye and 15N-isotope labeling of the xylem water transport. In order to assess the patterns of physiological integration contents of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and protein were determined and activities of superoxide dismutase (SOD) and peroxidase (POD) measured. When ramets were connected and exposed to heterogeneous UV-B radiation, the velocity of water transportation from the UV-B treated ramet to its connected sister ramet was markedly lower and the percentage of 15N left in labelled ramets that suffered from enhanced UV-B radiation was higher and their transfer to unlabelled ramets lower. In comparison with clones under homogeneous ultraviolet-B radiation, the content of chlorophyll, ultraviolet-B absorbing compounds, soluble sugar and activities of SOD and POD increased notably if ultraviolet-B stressed ramets were connected to untreated ramets. Chlorophyll and UV-B absorbing compounds were shared between connected ramets under heterogeneous UV-B radiation. This indicated that physiological connection improved the performance of whole clonal plants under heterogeneous ultraviolet-B radiation. The intensity of physiological integration of T. repens for resources decreased under heterogeneous ultraviolet-B radiation in favor of the stressed ramets. Ultraviolet-B stressed ramets benefited from unstressed ramets by physiological integration, supporting the hypothesis that clonal plants are able to optimize the efficiency of their resistance maintaining their presence also in less favorable sites. The results could be helpful for further understanding of the function of heterogeneous UV-B radiation on growth regulation and microevolution in clonal plants.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号