首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2525篇
  免费   218篇
  2743篇
  2023年   4篇
  2022年   18篇
  2021年   50篇
  2020年   17篇
  2019年   20篇
  2018年   35篇
  2017年   36篇
  2016年   80篇
  2015年   119篇
  2014年   132篇
  2013年   147篇
  2012年   223篇
  2011年   211篇
  2010年   152篇
  2009年   133篇
  2008年   143篇
  2007年   159篇
  2006年   138篇
  2005年   123篇
  2004年   149篇
  2003年   126篇
  2002年   129篇
  2001年   31篇
  2000年   23篇
  1999年   33篇
  1998年   40篇
  1997年   26篇
  1996年   20篇
  1995年   21篇
  1994年   21篇
  1993年   22篇
  1992年   20篇
  1991年   15篇
  1990年   13篇
  1989年   16篇
  1988年   8篇
  1987年   8篇
  1986年   9篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   7篇
  1981年   6篇
  1980年   5篇
  1979年   6篇
  1978年   8篇
  1977年   5篇
  1975年   6篇
  1974年   4篇
  1969年   3篇
排序方式: 共有2743条查询结果,搜索用时 15 毫秒
31.
Waxes are components of the cuticle covering the aerial organs of plants. Accumulation of waxes has previously been associated with protection against water loss, therefore contributing to drought tolerance. However, not much information is known about the function of individual wax components during water deficit. We studied the role of wax ester synthesis during drought. The wax ester load on Arabidopsis leaves and stems was increased during water deficiency. Expression of three genes, WSD1, WSD6 and WSD7 of the wax ester synthase/diacylglycerol acyltransferase (WS/DGAT or WSD) family was induced during drought, salt stress and abscisic acid treatment. WSD1 has previously been identified as the major wax ester synthase of stems. wsd1 mutants have shown reduced wax ester coverage on leaves and stems during normal or drought condition, while wax ester loads of wsd6, wsd7 and of the wsd6wsd7 double mutant were unchanged. The growth and relative water content of wsd1 plants were compromised during drought, while leaf water loss of wsd1 was increased. Enzyme assays with recombinant proteins expressed in insect cells revealed that WSD6 and WSD7 contain wax ester synthase activity, albeit with different substrate specificity compared with WSD1. WSD6 and WSD7 localize to the endoplasmic reticulum (ER)/Golgi. These results demonstrated that WSD1 is involved in the accumulation of wax esters during drought, while WSD6 and WSD7 might play other specific roles in wax ester metabolism during stress.  相似文献   
32.
33.
The anode/electrolyte interface behavior, and by extension, the overall cell performance of sodium-ion batteries is determined by a complex interaction of processes that occur at all components of the electrochemical cell across a wide range of size- and timescales. Single-scale studies may provide incomplete insights, as they cannot capture the full picture of this complex and intertwined behavior. Broad, multiscale studies are essential to elucidate these processes. Within this perspectives article, several analytical and theoretical techniques are introduced, and described how they can be combined to provide a more complete and comprehensive understanding of sodium-ion battery (SIB) performance throughout its lifetime, with a special focus on the interfaces of hard carbon anodes. These methods target various length- and time scales, ranging from micro to nano, from cell level to atomistic structures, and account for a broad spectrum of physical and (electro)chemical characteristics. Specifically, how mass spectrometric, microscopic, spectroscopic, electrochemical, thermodynamic, and physical methods can be employed to obtain the various types of information required to understand battery behavior will be explored. Ways are then discussed how these methods can be coupled together in order to elucidate the multiscale phenomena at the anode interface and develop a holistic understanding of their relationship to overall sodium-ion battery function.  相似文献   
34.
Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.  相似文献   
35.
Objective: To develop improved predictive regression equations for body fat content derived from common anthropometric measurements. Research Methods and Procedures: 117 healthy German subjects, 46 men and 71 women, 26 to 67 years of age, from two different studies were assigned to a validation and a cross‐validation group. Common anthropometric measurements and body composition by DXA were obtained. Equations using anthropometric measurements predicting body fat mass (BFM) with DXA as a reference method were developed using regression models. Results: The final best predictive sex‐specific equations combining skinfold thicknesses (SF), circumferences, and bone breadth measurements were as follows: BFMNew (kg) for men = ?40.750 + [(0.397 × waist circumference) + [6.568 × (log triceps SF + log subscapular SF + log abdominal SF)]] and BFMNew (kg) for women = ?75.231 + [(0.512 × hip circumference) + [8.889 × (log chin SF + log triceps SF + log subscapular SF)] + (1.905 × knee breadth)]. The estimates of BFM from both validation and cross‐validation had an excellent correlation, showed excellent correspondence to the DXA estimates, and showed a negligible tendency to underestimate percent body fat in subjects with higher BFM compared with equations using a two‐compartment (Durnin and Womersley) or a four‐compartment (Peterson) model as the reference method. Discussion: Combining skinfold thicknesses with circumference and/or bone breadth measures provide a more precise prediction of percent body fat in comparison with established SF equations. Our equations are recommended for use in clinical or epidemiological settings in populations with similar ethnic background.  相似文献   
36.
We studied the ethylene-insensitive, hypernodulating mutant, sickle (skl), to investigate the interaction of ethylene with auxin transport during root nodulation in Medicago truncatula. Grafting experiments demonstrated that hypernodulation in skl is root controlled. Long distance transport of auxin from shoot to root was reduced by rhizobia after 24 h in wild type but not in skl. Similarly, the ethylene precursor 1-amino cyclopropane-1-carboxylic acid inhibited auxin transport in wild type but not in skl. Auxin transport at the nodule initiation zone was significantly reduced by rhizobia after 4 h in both wild type and skl. After 24 h, auxin transport significantly increased at the nodule initiation zone in skl compared to wild type, accompanied by an increase in the expression of the MtPIN1 and MtPIN2 (pin formed) auxin efflux transporters. Response assays to different auxins did not show any phenotype that would suggest a defect of auxin uptake in skl. The auxin transport inhibitor N-1-naphthylphtalamic acid inhibited nodulation in wild type but not skl, even though N-1-naphthylphtalamic acid still inhibited auxin transport in skl. Our results suggest that ethylene signaling modulates auxin transport regulation at certain stages of nodule development, partially through PIN gene expression, and that an increase in auxin transport relative to the wild type is correlated with higher nodule numbers. We also discuss the regulation of auxin transport in skl in comparison to previously published data on the autoregulation mutant, super numerary nodules (van Noorden et al., 2006).  相似文献   
37.
The catabolism of the disulfide 3,3′-dithiodipropionic acid (DTDP) is initiated by the reduction of its disulfide bond. Three independent Tn5::mob-induced mutants of Advenella mimigardefordensis strain DPN7T were isolated that had lost the ability to utilize DTDP as the sole source of carbon and energy and that harbored the transposon insertions in three different sites of the same dihydrolipoamide dehydrogenase gene encoding the E3 subunit of the pyruvate dehydrogenase multi-enzyme complex of this bacterium (LpdAAm). LpdAAm was analyzed in silico and compared to homologous proteins, thereby revealing high similarities to the orthologue in Ralstonia eutropha H16 (PdhLRe). Both bacteria are able to cleave DTDP into two molecules of 3-mercaptopropionic acid (3MP). A. mimigardefordensis DPN7T converted 3MP to 3-sulfinopropionic acid, whereas R. eutropha H16 showed no growth with DTDP as the sole carbon source but was instead capable of synthesizing heteropolythioesters using the resulting cleavage product 3MP. Subsequently, the genes lpdAAm and pdhLRe were cloned, heterologously expressed in Escherichia coli applying the pET23a expression system, purified, and assayed by monitoring the oxidation of NADH. The physiological substrate lipoamide was reduced to dihydrolipoamide with specific activities of 1,833 mkat/kg of protein (LpdAAm) or 1,667 mkat/kg of protein (PdhLRe). Reduction of DTDP was also unequivocally detected with the purified enzymes, although the specific enzyme activities were much lower: 0.7 and 0.5 mkat/kg protein, respectively.In Advenella mimigardefordensis strain DPN7T (15, 42), three independent mutants with an insertion of Tn5::mob in the lpdA gene coding for the E3 component of the pyruvate dehydrogenase multi-enzyme complex revealed an interesting phenotype: these mutants were fully impaired in utilizing 3,3′-dithiodipropionic acid (DTDP) as the sole carbon and energy source, whereas the growth on no other tested carbon sources was affected (41). Our main interest in the catabolism of DTDP is to unravel the pathway and to identify the involved enzymes. Furthermore, the application of this disulfide as precursor substrate for biotechnological production of polythioesters (PTE) (22) is of interest. Since poly(3-mercaptopropionate) (PMP) biosynthesis depends hitherto on supplying the harmful thiol 3-mercaptopropionic acid (3MP) (35), an improvement of the recombinant Escherichia coli system by heterologous expression of enzymes capable of cleaving the less toxic DTDP symmetrically into two molecules of 3MP, which are then polymerized, could be an important achievement toward large-scale biotechnological production of PMP.Two different enzyme systems catalyzing the conversion of disulfides into the corresponding thiols are already known and have been described in detail. (i) Enzymes belonging to the well-characterized family of pyridine-nucleotide disulfide oxidoreductases (25) contain a redox center formed by a disulfide bridge coupled to a flavin ring. They catalyze a simultaneous two-electron transfer via the enzymatic active disulfides associated with the pyridine nucleotides and flavin, toward the substrate (39, 40). (ii) An alternative disulfide reduction is catalyzed by enzymes using iron-sulfur clusters to cleave of disulfide substrates in two one-electron reduction steps (37). The disrupted gene in A. mimigardefordensis was designated lpdAAm (EC 1.8.1.4), and it encodes a homodimeric flavoprotein, the dihydrolipoamide dehydrogenase LpdAAm (i.e., the E3 component of the pyruvate dehydrogenase multi-enzyme complex of A. mimigardefordensis strain DPN7T) belonging to the above-mentioned family of pyridine nucleotide-disulfide oxidoreductases. Enzymes of this class share high sequence and structural similarities and catalyze reduction of compounds which are linked by disulfide bonds (38). Alkylhydroperoxide reductases, coenzyme A disulfide reductases, glutathione reductases, mycothione reductases, thioredoxin reductases, and trypanothione reductases also, in addition to dihydrolipoamide dehydrogenases, belong to this family (3, 38). The physiological function of LpdAAm is most probably the conversion of lipoamide to dihydrolipoamide, but the reduction of DTDP into two molecules of 3MP (Fig. (Fig.1)1) is also predicted, enabling the first step in DTDP catabolism in A. mimigardefordensis strain DPN7T (41).Open in a separate windowFIG. 1.Reactions catalyzed by LpdAAm and PdhLRe. Presented are the enzymatic conversions of DTDP into two molecules of 3MP (A), lipoamide into dihydrolipoamide (B), and DTNB into two molecules of NTB (C). Abbreviations: DTDP, 3,3′-dithiodipropionic acid; 3MP, 3-mercaptopropionic acid; DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid); NTB, 2-nitro-5-thiobenzoic acid.Ralstonia eutropha H16 synthesizes copolymers of 3-hydroxybutyrate and 3MP, if 3MP (23) or DTDP (22) is supplied as a precursor in addition to a second utilizable carbon source. Although R. eutropha is not able to grow with DTDP as the sole carbon source, it must be capable of cleaving this organic disulfide symmetrically, because it synthesizes from it heteropolymers containing the resulting 3MP. Thus, R. eutropha must possess at least one gene encoding a DTDP-cleaving enzyme. Five genes coding for homologues of a dihydrolipoamide dehydrogenase (DHLDH), which in A. mimigardefordensis DPN7T is obviously involved in DTDP degradation, are known to exist in the genome of R. eutropha H16 (27; M. Raberg, J. Bechmann, U. Brandt, J. Schlüter, B. Uischner, and A. Steinbüchel, unpublished data). Therefore, LpdAAm and the five DHLDH paralogues of R. eutropha H16 were aligned and compared (Fig. (Fig.2).2). Subsequently, lpdAAm and the gene encoding the DHLDH belonging to the pyruvate dehydrogenase complex of R. eutropha H16 (pdhLRe) were cloned, heterologously expressed in Escherichia coli, purified, and assayed.Open in a separate windowFIG. 2.Phylogenetic relationships of the A. mimigardefordensis strain DPN7T LpdA (boldface), R. eutropha H16 PdhL (boldface), and homologues. The neighbor-joining plot was derived from a CLUSTAL X alignment of amino acid sequences closely related to LpdAAm. The amino acid sequence of the outer membrane protein P64K from Neisseria meningitidis was used as the outgroup. GenBank accession numbers are given in parentheses. Scale bar, 10% sequence divergence.  相似文献   
38.
Atmospheric deposition is an important nutrient input to forests. The chemical composition of the rainfall is altered by the forest canopy due to interception and canopy exchange. Bulk deposition and stand deposition (throughfall plus stemflow) of Na+, Cl?, K+, Ca2+, Mg2+, PO 4 3? , SO 4 2? , H+, Mn2+, Al3+, Fe2+, NH 4 + , NO 3 ? and Norg were measured in nine deciduous forest plots with different tree species diversity in central Germany. Interception deposition and canopy exchange rates were calculated with a canopy budget model. The investigated forest plots were pure beech (Fagus sylvatica L.) plots, three-species plots (Fagus sylvatica, Tilia cordata Mill. or T. platyphyllos Scop. and Fraxinus excelsior L.) and five-species plots (Fagus sylvatica, T. cordata or T. platyphyllos, Fraxinus excelsior, Acer platanoides L., A. pseudoplatanus L. or A. campestre L. and Carpinus betulus L.). The interception deposition of all ions was highest in pure beech plots and was negatively related to the Shannon index. The stand deposition of K+, Ca2+, Mg2+ and PO 4 3? was higher in mixed species plots than in pure beech plots due to higher canopy leaching rates in the mixed species plots. The acid input to the canopy and to the soil was higher in pure beech plots than in mixed species plots. The high canopy leaching rates of Mn2+ in pure beech plots indicated differences in soil properties between the plot types. Indeed, pH, effective cation exchange capacity and base saturation were lower in pure beech plots. This may have contributed to the lower leaching rates of K+, Ca2+ and Mg2+ compared to the mixed species plots. However, foliar analyses indicated differences in the ion status among the tree species, which may additionally have influenced canopy exchange. In conclusion, the nutrient input to the soil resulting from deposition and canopy leaching was higher in mixed species plots than in pure beech plots, whereas the acid input was highest in pure beech plots.  相似文献   
39.
Ferret-badgers, genus Melogale, are distributed in the Indochinese region, Java, Bali and NE-Borneo. There are currently four species described each having very similar phenotypes. In March 2005, a living ferret-badger of a different phenotype was confiscated by rangers from Cuc Phuong National Park, Vietnam. This individual died and the carcass was not preserved. In January 2006, a newly deceased individual of the same phenotype was found at the Endangered Primate Rescue Center, Cuc Phuong National Park. Due to several different characteristics these individuals vary greatly from the current species. Thus, we describe an additional species, M. cucphuongensis sp. nov. from northern Vietnam, which occurs sympatrically with M. moschata and M. personata, but differs from both species clearly in skull morphology and other features.Based on a 423 bp-long fragment of the mitochondrial cytochrome b gene, M. cucphuongensis sp. nov. is a member of the genus Melogale and represents a sister lineage to a clade consisting of M. personata and M. moschata.  相似文献   
40.
The nidogen-laminin interaction is proposed to play a key role in basement membrane (BM) assembly. However, though there are similarities, the phenotypes in mice lacking nidogen 1 and 2 (nidogen double null) differ to those of mice lacking the nidogen binding module (γ1III4) of the laminin γ1 chain. This indicates different cell- and tissue-specific functions for nidogens and their interaction with laminin and poses the question of whether the phenotypes in nidogen double null mice are caused by the loss of the laminin-nidogen interaction or rather by other unknown nidogen functions. To investigate this, we analyzed BMs, in particular those in the skin of mice lacking the nidogen binding module. In contrast to nidogen double null mice, all skin BMs in γ1III4-deficient mice appeared normal. Furthermore, although nidogen 1 deposition was strongly reduced, nidogen 2 appeared unchanged. Mice with additional deletion of the laminin γ3 chain, which contains a γ1-like nidogen binding module, showed a further reduction of nidogen 1 in the dermoepidermal BM; however, this again did not affect nidogen 2. This demonstrates that in vivo only nidogen 1 deposition is critically dependent on the nidogen binding modules of the laminin γ1 and γ3 chains, whereas nidogen 2 is independently recruited either by binding to an alternative site on laminin or to other BM proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号