首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   22篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   20篇
  2011年   13篇
  2010年   12篇
  2009年   10篇
  2008年   7篇
  2007年   17篇
  2006年   17篇
  2005年   14篇
  2004年   9篇
  2003年   10篇
  2002年   13篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   6篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
101.

Background  

Splicing of DNA molecules is an important task in molecular biology that facilitates cloning, mutagenesis and creation of chimeric genes. Mutagenesis and DNA splicing techniques exist, some requiring restriction enzymes, and others utilize staggered reannealing approaches.  相似文献   
102.
Hereditary inclusion body myopathy (HIBM) is a unique group of neuromuscular disorders characterized by adult-onset, slowly progressive distal and proximal muscle weakness, which is caused by mutations in UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE), the key enzyme in the biosynthetic pathway of sialic acid. In order to investigate the consequences of the mutated GNE enzyme in muscle cells, we have established cell cultures from muscle biopsies carrying either kinase or epimerase mutations. While all myoblasts carrying a mutated GNE gene show a reduction in their epimerase activity, only the cells derived from the patient carrying a homozygous epimerase mutation present also a significant reduction in the overall membrane bound sialic acid. These results indicate that although mutations in each of the two GNE domains result in an impaired enzymatic activity and the same HIBM phenotype, they do not equally affect the overall sialylation of muscle cells. This lack of correlation suggests that the pathological mechanism of the disease may not be linked solely to the well-characterized sialic acid pathway.  相似文献   
103.
Administration of peptide YY(3-36) (PYY(3-36)) to fasting humans or mice shortly before re-feeding effectively reduced their food intake, but PYY(3-36) exhibited a functional half-life of only approximately 3 h. Attachment of poly(ethylene glycol) to proteins and peptides (PEGylation) prolongs their half-life in vivo, but completely inactivated PYY(3-36). We developed a reversibly PEGylated PYY(3-36) derivative by coupling it to a 40 kDa PEG through a spontaneously cleavable linker. The resulting conjugate (PEG(40)-FMS-PYY(3-36)) gradually released unmodified PYY(3-36) in vivo, exhibiting an eightfold increase in its functional half-life, to approximately 24h. This long-acting PYY(3-36) pro-drug may serve as an effective means for controlling food intake in humans.  相似文献   
104.
Time-resolved measurements indicated that protons could propagate on the surface of a protein or a membrane by a special mechanism that enhanced the shuttle of the proton toward a specific site. It was proposed that a suitable location of residues on the surface contributes to the proton shuttling function. In this study, this notion was further investigated by the use of molecular dynamics simulations, where Na(+) and Cl(-) are the ions under study, thus avoiding the necessity for quantum mechanical calculations. Molecular dynamics simulations were carried out using as a model a few Na(+) and Cl(-) ions enclosed in a fully hydrated simulation box with a small globular protein (the S6 of the bacterial ribosome). Three independent 10-ns-long simulations indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. However, it was noted that close to some domains the ions extended their duration near the surface, thus suggesting that the local electrostatic potential hindered their diffusion to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of the molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.  相似文献   
105.
106.
Lycopersicon esculentum and L. chmielewskii are respectively susceptible and resistant to the potato tuber moth (Phthorimaea operculella Zeller) in the field. Feeding bioassays were conducted with the herbivore caterpillars reared on callus derived from both tomato species and grown in vitro, and the influence of carbohydrate supplements to the callus culture medium, on the insect's feeding behavior was investigated. Newly-hatched larvae fed with L. esculentum or L. chmielewskii callus raised on a medium with 88 mM sucrose, reached a weight of 12–15 mg and 1.5–3.0 mg, respectively, within 9 days. Restriction of larval weight increase in insects reared on L. chmielewskii callus, disappeared when the host tissue was transferred 24 h prior to the callus-insect assay to a medium supplemented with 264 mM of either sucrose, glucose, fructose or mannose. The capability of L. chmielewskii callus to restrict growth of larvae was restored in host tissue retransferred from a medium with 264 mM sucrose to a 24-h incubation on one supplemented with 264 mM of either mannitol, sorbitol, glycerol or myo-inositol, before the callus-insect bioassay. The larval growth response remained unaltered by callus incubated on a medium with 264 mM xylose. The ameliorating effect on insect growth of high sucrose in the callus medium was not due to sucrose as an ingredient of the insect's diet. The diverse response of L. chmielewskii callus, and its dependence on the type of carbohydrate in the medium, rule out effects of these substances as nonspecific medium osmotica. The swift callus responses to carbohydrates (within hours of a change in medium composition), as reflected in the insect's growth, were not accompanied by visible morphological variations in the host tissue. We suggest that suppression by high levels of exogenously applied saccharides and derepression by exogenous polyols and myo-inositol of the impedement to growth of the potato tuber moth larva, reflect the existence in L. chmielewskii of a carbon metabolic control mechanism of gene expression whose products affect insect growth.  相似文献   
107.
A novel TG mutation in exon 4 of the PMP22 gene was identified heterozygously in a girl with severe, de novo CMTIA disease. Duplication of the chromosomal 17p11–12 region, encompassing the PMP22 gene, was ruled out. This is the only known mutation that specifically affects the human fourth transmembrane (TM) domain of PMP22. It results in a substitution of a non-polar amino acid by a polar one (Leu1474Arg), similar to the nearby Gly150Asp substitution, underlying the severe Trembler phenotype in the mouse. These mutations suggest that the fourth TM domain plays a crucial role in the normal function of PMP22. The new mutation also augments previous observations that diseases caused by mutations in PMP22 are more severe than those caused by the duplication of 17p11–12.  相似文献   
108.
Species‐delimitation studies across wide geographic ranges often reveal insights that ultimately improve our understanding of biogeographic and evolutionary processes. Here we investigated species delimitation and the global coastal pelagic population structures of the marine sardine species from the economically important subgenus Sardinella (Clupeidae). The main purpose of this study was to relate morphological and genetic discontinuities to biogeography, in a taxonomic and systematic context. Morphological examinations have first reduced the currently recognized five species of the subgenus to two distinct morphospecies with parapatric relationship. Genetic analyses further showed a remarkable shallow genealogy across a global scale, yet to be encountered among small pelagic fishes. Additional three species‐delimitation analyses have failed to delimit the five putative species, indicating the possible existence of only a single cosmopolitan species with two ecophenotypic variations, thus entitling Sardinella aurita as the world's most widespread small pelagic fish. Subsequent population‐structure investigations revealed distinct geographical intraspecific sub‐divisions, flagging the West Pacific Ocean through gene‐flow computations as the probable source of future speciation for the subgenus. Considering its utmost importance to fisheries, this finding of a remarkable global genetic homogeneity should attract future attention among population geneticists and fishery researchers.  相似文献   
109.
Summary The functional R6K origin is composed of two DNA elements, one of 580 bp carrying the origin sequences and the other of 277 bp containing the seven 22 bp direct repeats previosly identified as also required for and origin activity. These two genetic elements are separated by approximately 3,000 bp of R6K sequences which are dispensable for origin activity. The function of the origin depends on the presence in cis of the 580 bp and the 277 bp fragments and requires that they be oriented as in the intact R6K. Activation of the origin depends on the R6K replication initiation protein .Within the 580 bp of the origin, there is a sequence of 98 bp which appears as an inverted repeat of 96 bp in the replicon. Deletion of the 96 bp or 98 bp results in inactivation of the and the origins respectively. These long repeats are palindromic and it is suggested that these may serve as the recognition signals for initiation of DNA replication in the and the origins of R6K. DNA homology analysis performed on , and origin sequences, also reveals 10–23 bp sequences in the and the origins that are related to the family of 22 bp direct repeats in the origin which were shown previously to be binding sites for the protein.  相似文献   
110.
The regulation of plant hydraulic conductance and gas conductance involves a number of different morphological, physiological and molecular mechanisms working in harmony. At the molecular level, aquaporins play a key role in the transport of water, as well as CO2, through cell membranes. Yet, their tissue-related function, which controls whole-plant gas exchange and water relations, is less understood. In this study, we examined the tissue-specific effects of the stress-induced tobacco Aquaporin1 (NtAQP1), which functions as both a water and CO2 channel, on whole-plant behavior. In tobacco and tomato plants, constitutive overexpression of NtAQP1 increased net photosynthesis (A N), mesophyll CO2 conductance (g m) and stomatal conductance (g s) and, under stress, increased root hydraulic conductivity (L pr) as well. Our results revealed that NtAQP1 that is specifically expressed in the mesophyll tissue plays an important role in increasing both A N and g m. Moreover, targeting NtAQP1 expression to the cells of the vascular envelope significantly improved the plants’ stress response. Surprisingly, NtAQP1 expression in the guard cells did not have a significant effect under any of the tested conditions. The tissue-specific involvement of NtAQP1 in hydraulic and gas conductance via the interaction between the vasculature and the stomata is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号