首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   18篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   20篇
  2011年   13篇
  2010年   12篇
  2009年   10篇
  2008年   7篇
  2007年   17篇
  2006年   17篇
  2005年   14篇
  2004年   8篇
  2003年   10篇
  2002年   13篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有240条查询结果,搜索用时 6 毫秒
71.
Stomata, composed of two guard cells, are the gates whose controlled movement allows the plant to balance the demand for CO2 for photosynthesis with the loss of water through transpiration. Increased guard‐cell osmolarity leads to the opening of the stomata and decreased osmolarity causes the stomata to close. The role of sugars in the regulation of stomata is not yet clear. In this study, we examined the role of hexokinase (HXK), a sugar‐phosphorylating enzyme involved in sugar‐sensing, in guard cells and its effect on stomatal aperture. We show here that increased expression of HXK in guard cells accelerates stomatal closure. We further show that this closure is induced by sugar and is mediated by abscisic acid. These findings support the existence of a feedback‐inhibition mechanism that is mediated by a product of photosynthesis, namely sucrose. When the rate of sucrose production exceeds the rate at which sucrose is loaded into the phloem, the surplus sucrose is carried toward the stomata by the transpiration stream and stimulates stomatal closure via HXK, thereby preventing the loss of precious water.  相似文献   
72.
The hydraulic conductivity of the leaf vascular system (Kleaf) is dynamic and decreases rapidly under drought stress, possibly in response to the stress phytohormone ABA, which increases sharply in the xylem sap (ABAxyl) during periods of drought. Vascular bundle‐sheath cells (BSCs; a layer of parenchymatous cells tightly enwrapping the entire leaf vasculature) have been hypothesized to control Kleaf via the specific activity of BSC aquaporins (AQPs). We examined this hypothesis and provide evidence for drought‐induced ABAxyl diminishing BSC osmotic water permeability (Pf) via downregulated activity of their AQPs. ABA fed to the leaf via the xylem (petiole) both decreased Kleaf and led to stomatal closure, replicating the effect of drought. In contrast, smearing ABA on the leaf blade, while also closing stomata, did not decrease Kleaf within 2–3 h of application, demonstrating that Kleaf does not depend entirely on stomatal closure. GFP‐labeled BSCs showed decreased Pf in response to ‘drought’ and ABA treatment, and a reversible decrease with HgCl2 (an AQP blocker). These Pf responses, absent in mesophyll cells, suggest stress‐regulated AQP activity specific to BSCs, and imply a role for these cells in decreasing Kleaf via a reduction in Pf. Our results support the above hypothesis and highlight the BSCs as hitherto overlooked vasculature sensor compartments, extending throughout the leaf and functioning as ‘stress‐regulated valves’ converting vasculature chemical signals (possibly ABAxyl) into leaf hydraulic signals.  相似文献   
73.
74.
Plant architecture is a predictable but flexible trait. The timing and position of organ initiation from the shoot apical meristem (SAM) contribute to the final plant form. While much progress has been made recently in understanding how the site of leaf initiation is determined, the mechanism underlying the temporal interval between leaf primordia is still largely unknown. The Arabidopsis ZRIZI (ZRZ) gene belongs to a large gene family encoding multidrug and toxic compound extrusion (MATE) transporters. Unique among plant MATE transporters identified so far, ZRZ is localized to the membrane of a small organelle, possibly the mitochondria. Plants overexpressing ZRZ in initiating leaves are short, produce leaves much faster than wild-type plants and show enhanced growth of axillary buds. These results suggest that ZRZ is involved in communicating a leaf-borne signal that determines the rate of organ initiation.  相似文献   
75.
Growth factor receptor bound protein 7 (Grb7) is an adapter protein that functions as a downstream effector of growth factor mediated signal transduction. Over-expression of Grb7 has been implicated in a variety of cancers such as breast, blood, pancreatic, esophageal, and gastric carcinomas. Inhibition of Grb7 has been shown to reduce the migratory and proliferative potential of these cancers, making it an attractive therapeutic target. Starting with a known peptide antagonist, the present work reports the application of a succession of computational ligand design tools comprising a ligand shape based similarity search, molecular docking and a 2D-similarity search to identify small molecular antagonists of the Grb7-SH2 domain from the NCI chemical database. Binding to the Grb7-SH2 domain was then experimentally tested using melting point shift assays and isothermal titration calorimetry. Overall, a total of 11 benzopyrazine based small molecular antagonists were identified with affinity for the Grb7-SH2 domain. Representative compounds tested using ITC were revealed to possess moderate binding affinity in the low micromolar range. Finally, the lead compound (NSC642056) was found to reduce the growth of a Grb7-expressing breast cancer cell line with an IC50 of 86 ??M. It is expected that the identified antagonists will be useful additions to further explore the function of Grb7 and for the development of inhibitors with therapeutic potential.  相似文献   
76.
The entry of substrate into the active site is the first event in any enzymatic reaction. However, due to the short time interval between the encounter and the formation of the stable complex, the detailed steps are experimentally unobserved. In the present study, we report a molecular dynamics simulation of the encounter between palmitate molecule and the Toad Liver fatty acid binding protein, ending with the formation of a stable complex resemblance in structure of other proteins of this family. The forces operating on the system leading to the formation of the tight complex are discussed.  相似文献   
77.
Ganoth A  Nachliel E  Friedman R  Gutman M 《Biochemistry》2007,46(50):14524-14536
Myosin V moves along actin filaments by an arm-over-arm motion, known as the lever mechanism. Each of its arms is composed of six consecutive IQ peptides that bind light chain proteins, such as calmodulin or calmodulin-like proteins. We have employed a multistage approach in order to investigate the mechanochemical structural basis of the movement of myosin V from the budding yeast Saccharomyces cerevisiae. For that purpose, we previously carried out molecular dynamics simulations of the Mlc1p-IQ2 and the Mlc1p-IQ4 protein-peptide complexes, and the present study deals with the structures of the IQ peptides when stripped from the Mlc1p protein. We have found that the crystalline structure of the IQ2 peptide retains a stable rodlike configuration in solution, whereas that of the IQ4 peptide grossly deviates from its X-ray conformation exhibiting an intrinsic tendency to curve and bend. The refolding process of the IQ4 peptide is initially driven by electrostatic interactions followed by nonpolar stabilization. Its bending appears to be affected by the ionic strength, when ionic strength higher than approximately 300 mM suppresses it from flexing. Considering that a poly-IQ sequence is the lever arm of myosin V, we suggest that the arm may harbor a joint, localized within the IQ4 sequence, enabling the elasticity of the neck of myosin V. Given that a poly-IQ sequence is present at the entire class of myosin V and the possibility that the yeast's myosin V molecule can exist either as a nonprocessive monomer or as a processive dimer depending on conditions (Krementsova, E. B., Hodges, A. R., Lu, H., and Trybus, K. M. (2006) J. Biol. Chem. 281, 6079-6086), our observations may account for a general structural feature for the myosins' arm embedded flexibility.  相似文献   
78.
BACKGROUND: The aim of the study was to examine effects of Helicobacter pylori eradication on chronic idiopathic urticaria (CU) with and without positive aulogous serum skin test (ASST). METHODS: Seventy-eight patients with CU were checked for the positivity ASST and H. pylori urea (13)C-urea breath test ((13)C-UBT). Twenty-one patients were with both positive ASST and positive (13)C-UBT (group A), and 24 patients were with negative ASST and positive (13)C-UBT (group B). All patients with positive (13)C-UBT received a 14-day, open treatment with amoxicillin 1 g b.i.d., clarithromycin 500 mg b.i.d., and omeprazole 20 mg b.i.d. H. pylori eradication was assessed by a second (13)C-UBT after 8 weeks. In control group, 33 patients with CU were included. The effect of H. pylori eradication on CU was evaluated by urticaria activity score (UAS), measured at study entry and at 8 and 16 weeks. RESULTS: At week 8, baseline UAS reduced from 4.7 +/- 1.1 to 2.4 +/- 1.4 (p = .027) in group A and from 4.3 +/- 1.5 to 2.3 +/- 1.2 (p = .008) in group B, without statistically significant difference between the two groups. In control group and in six patients with H. pylori eradication failure, no changes of UAS were noted. CONCLUSION: Eradication of H. pylori infection by triple therapy significantly and equally reduces UAS in CU patients with positive and negative ASST.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号