首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   222篇
  免费   18篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   3篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   20篇
  2011年   13篇
  2010年   12篇
  2009年   10篇
  2008年   7篇
  2007年   17篇
  2006年   17篇
  2005年   14篇
  2004年   8篇
  2003年   10篇
  2002年   13篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1976年   2篇
  1975年   2篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   2篇
  1966年   2篇
排序方式: 共有240条查询结果,搜索用时 797 毫秒
131.
Bosis E  Nachliel E  Cohen T  Takeda Y  Ito Y  Bar-Nun S  Gutman M 《Biochemistry》2008,47(41):10970-10980
The calnexin/calreticulin cycle is a quality control system responsible for promoting the folding of newly synthesized glycoproteins entering the endoplasmic reticulum (ER). The association of calnexin and calreticulin with the glycoproteins is regulated by ER glucosidase II, which hydrolyzes Glc 2Man X GlcNAc 2 glycans to Glc 1Man X GlcNAc 2 and further to Glc 0Man X GlcNAc 2 ( X represents any number between 5 and 9). To gain new insights into the reaction mechanism of glucosidase II, we developed a kinetic model that describes the interactions between glucosidase II, calnexin/calreticulin, and the glycans. Our model accurately reconstructed the hydrolysis of glycans with nine mannose residues and glycans with seven mannose residues, as measured by Totani et al. [Totani, K., Ihara, Y., Matsuo, I., and Ito, Y. (2006) J. Biol. Chem. 281, 31502-31508]. Intriguingly, our model predicted that glucosidase II was inhibited by its nonglucosylated end products, where the inhibitory effect of Glc 0Man 7GlcNAc 2 was much stronger than that of Glc 0Man 9GlcNAc 2. These predictions were confirmed experimentally. Moreover, our model suggested that glycans with a different number of mannose residues can be equivalent substrates of glucosidase II, in contrast to what had been previously thought. We discuss the possibility that nonglucosylated glycans, existing in the ER, might regulate the entry of newly synthesized glycoproteins into the calnexin/calreticulin cycle. Our model also shows that glucosidase II does not interact with monoglucosylated glycans while they are bound to calnexin or calreticulin.  相似文献   
132.
Protein Surface Dynamics: Interaction with Water and Small Solutes   总被引:1,自引:0,他引:1  
Previous time resolved measurements had indicated that protons could propagate on the surface of a protein, or a membrane, by a special mechanism that enhances the shuttle of the proton towards a specific site [1]. It was proposed that a proper location of residues on the surface contributes to the proton shuttling function. In the present study, this notion was further investigated using molecular dynamics, with only the mobile charge replaced by Na+ and Cl ions. A molecular dynamics simulation of a small globular protein (the S6 of the bacterial ribosome) was carried out in the presence of explicit water molecules and four pairs of Na+ and Cl ions. A 10 ns simulation indicated that the ions and the protein's surface were in equilibrium, with rapid passage of the ions between the protein's surface and the bulk. Yet it was noted that, close to some domains, the ions extended their duration near the surface, suggesting that the local electrostatic potential prevented them from diffusing to the bulk. During the time frame in which the ions were detained next to the surface, they could rapidly shuttle between various attractor sites located under the electrostatic umbrella. Statistical analysis of molecular dynamics and electrostatic potential/entropy consideration indicated that the detainment state is an energetic compromise between attractive forces and entropy of dilution. The similarity between the motion of free ions next to a protein and the proton transfer on the protein's surface are discussed.  相似文献   
133.
The swimming crab Charybdis longicollis, native to the western Indian Ocean, was first recorded in the Mediterranean in 1954. It is now established from Egypt to Greece, and dominates the sandy-mud bottoms at 25–80?m in the southeastern Mediterranean. The success of C. longicollis is attributed to its high fecundity, agonistic behaviour and omnivorous diet, as well as the rise in seawater temperature. Since the early 1990s its populations in Israel and Turkey have been heavily parasitized by the alien rhizocephalan Heterosaccus dollfusi, which impacts its host’s behaviour, growth and fecundity, and causes mortality. Yet, 60 years after its first record in the Mediterranean, the population of C. longicollis seems durable, and has recently spread to the lower shelf and upper slope off Israel, where it is common at 80?m and is found down to 250?m, greatly increasing its spatial spread. The maximal percentage of parasitization was 87.2%, 88.8%, 75.5% and 81.8% at depths of 40, 60, 80, 100?m, respectively, and 50% at 120 and 250?m. Here, we hypothesize on the possible contribution of the depletion of its putative fish predators, mainly rays, to the prevalence of C. longicollis on the lower shelf.  相似文献   
134.
SUMMARY: Cytoscape enhanced search plugin (ESP) enables searching complex biological networks on multiple attribute fields using logical operators and wildcards. Queries use an intuitive syntax and simple search line interface. ESP is implemented as a Cytoscape plugin and complements existing search functions in the Cytoscape network visualization and analysis software, allowing users to easily identify nodes, edges and subgraphs of interest, even for very large networks. Availabiity: http://chianti.ucsd.edu/cyto_web/plugins/ CONTACT: ashkenaz@agri.huji.ac.il.  相似文献   
135.
The dynamics of proton transfer between the surface of purple membrane and the aqueous bulk have recently been investigated by the Laser Induced Proton Pulse Method. Following a Delta-function release of protons to the bulk, the system was seen to regain its state of equilibrium within a few hundreds of microseconds. These measurements set the time frame for the relaxation of any state of acid-base disequilibrium between the bacteriorhodopsin's surface and the bulk. It was also deduced that the released protons react with the various proton binding within less than 10 micro s. In the present study, we monitored the photocycle and the proton-cycle of photo-excited bacteriorhodopsin, in the absence of added buffer, and calculated the proton balance between the Schiff base and the bulk phase in a time-resolved mode. It was noticed that the late phase of the M decay (beyond 1 ms) is characterized by a slow (subsecond) relaxation of disequilibrium, where the Schiff base is already reprotonated but the pyranine still retains protons. Thus, it appears that the protonation of D96 is a slow rate-limiting process that generates a "proton hole" in the cytoplasmic section of the protein. The velocity of the hole propagation is modulated by the ionic strength of the solution and by selective replacements of charged residues on the interhelical loops of the protein, at domains that seems to be remote from the intraprotein proton conduction trajectory.  相似文献   
136.
137.
Interleukin-18 (IL-18) is a pro-inflammatory cytokine, and IL-18-binding protein (IL-18BP) is a naturally occurring protein that binds IL-18 and neutralizes its biological activities. Computer modeling of human IL-18 identified two charged residues, Glu-42 and Lys-89, which interact with oppositely charged amino acid residues buried in a large hydrophobic pocket of IL-18BP. The cell surface IL-18 receptor alpha chain competes with IL-18BP for IL-18 binding, although the IL-18 receptor alpha chain does not share significant homology to IL-18BP. In the present study, Glu-42 was mutated to Lys and Lys-89 to Glu; Glu-42 and Lys-89 were also deleted separately. The deletion mutants (E42X and K89X) were devoid of biological activity, and the K89E mutant lost 95% of its activity. In contrast, compared with wild-type (WT) IL-18, the E42K mutant exhibited a 2-fold increase in biological activity and required a 4-fold greater concentration of IL-18BP for neutralization. The binding of WT IL-18 and its various mutants to human natural killer cells was evaluated by competition assays. The mutant E42K was more effective than WT IL-18 in inhibiting the binding of (125)I-IL-18 to natural killer cells, whereas the three inactive mutants E42X, K89E, and K89X were unable to compete with (125)I-IL-18 for binding. Similarly, WT IL-18 and the E42K mutant induced degradation of Ikappa-Balpha, whereas the three biologically inactive mutants did not induce degradation. The present study reveals that Glu-42 and Lys-89 are critical amino acid residues for the integrity of IL-18 structure and are important for binding to cell surface receptors, for signal transduction, and for neutralization by IL-18BP.  相似文献   
138.
139.
The last phase of the proton transfer cycle of bacteriorhodopsin calls for a passage of a proton from D38 to D96. This reaction utilizes a narrow shaft approximately 10-A long that connects the two carboxylates that cross through a very hydrophobic domain. As the shaft is too narrow to be permanently hydrated, there are two alternatives for the proton propagation into the channel. The proton may propagate through the shaft without solvation at the expense of a high electrostatic barrier; alternatively, the shaft will expand to accommodate some water molecules, thus lowering the Born energy for the insertion of the charge into the protein (B. Sch?tzler, N. A. Dencher, J. Tittor, D. Oesterhelt, S. Yaniv-Checover, E. Nachliel, and G. Gutman, 2003, BIOPHYS: J. 84:671-686). A comparative study of nine published crystal-structures of bacteriorhodopsin identified, next to the shaft, microcavities in the protein whose position and surrounding atoms are common to the reported structures. Some of the cavities either shrink or expand during the photocycle. It is argued that the plasticity of the cavities provides a working space needed for the transient solvation of the shaft, thus reducing the activation energy necessary for the solvation of the shaft. This suggestion is corroborated by the recent observations of Klink et al. (B. U. Klink, R. Winter, M. Engelhard, and I. Chizhov, 2002, BIOPHYS: J. 83:3490-3498) that the late phases of the photocycle (tau >/=1 ms) are strongly inhibited by external pressure.  相似文献   
140.
Steady state mRNA levels in various human tissues reveal that the proinflammatory cytokine IL-18 is constitutively and ubiquitously expressed. However, limited IL-18R alpha-chain (IL-18Ralpha) expression in tissues may restrict ligand-acting sites and contribute to a specific response for IL-18. To study the IL-18R complex, [(125)I]IL-18 was studied for binding to the cell surface receptors of IL-18-responsive NK and macrophagic KG-1 cells. After cross-linking, [(125)I]IL-18 formed three IL-18R complexes with sizes of approximately 93, 160, and 220 kDa. In KG-1 cells, Scatchard analysis revealed the presence of 135 binding sites/cell, with an apparent dissociation constant (K(d)) of 250 pM; in NK cells, there were 350 binding sites per cell with an apparent K(d) of 146 pM. Each domain of extracellular IL-18Ralpha was cloned and individually expressed in Escherichia coli. An mAb specifically recognized the membrane-proximal third domain; this mAb blocked IL-18-induced IFN-gamma production in NK cells. Furthermore, deletion of the membrane-proximal third domain of IL-18Ralpha prevented the formation of IL-18R ternary complex with IL-18R beta-chain. The present studies demonstrate that the biologically active IL-18R complex requires the membrane-proximal third Ig-like domain in IL-18Ralpha for the formation of IL-18R ternary complex as well as for signal transduction involved in IL-18-induced IFN-gamma in NK cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号