首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   148篇
  2022年   14篇
  2021年   14篇
  2019年   14篇
  2017年   16篇
  2016年   19篇
  2015年   25篇
  2014年   25篇
  2013年   39篇
  2012年   47篇
  2011年   54篇
  2010年   27篇
  2009年   20篇
  2008年   36篇
  2007年   46篇
  2006年   28篇
  2005年   45篇
  2004年   38篇
  2003年   40篇
  2002年   39篇
  2001年   20篇
  2000年   15篇
  1999年   13篇
  1998年   22篇
  1997年   20篇
  1995年   9篇
  1994年   9篇
  1993年   15篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   14篇
  1988年   19篇
  1987年   16篇
  1986年   11篇
  1985年   12篇
  1984年   16篇
  1981年   17篇
  1980年   11篇
  1979年   22篇
  1978年   19篇
  1977年   15篇
  1976年   15篇
  1974年   21篇
  1973年   16篇
  1971年   9篇
  1970年   13篇
  1969年   16篇
  1968年   11篇
  1967年   10篇
  1964年   9篇
排序方式: 共有1164条查询结果,搜索用时 15 毫秒
991.
992.
Studies of the desiccation tolerance of the seedlings of five tropical trees were made on potted plants growing in a greenhouse. Pots were watered to field capacity and then dehydrated for 3 to 9 weeks to reach various visual wilting stages, from slightly wilted to dead. Saturated root hydraulic conductance was measured with a high-pressure flowmeter, and whole-stem hydraulic conductance was measured by a vacuum chamber method. Leaf punches (5.6-mm diameter) were harvested for measurement of leaf water potential by a thermocouple psychrometer method and for measurement of fresh and dry weight. In a parallel study, the same five species were studied in a field experiment in the understory of a tropical forest, where these species frequently germinate. Control seedlings were maintained in irrigated plots during a dry season, and experimental plants were grown in similar plots with rain exclusion shelters. Every 2 to 4 weeks, the seedlings were scored for wilt state and survivorship. After a 22-week drought, the dry plots were irrigated for several weeks to verify visual symptoms of death. The field trials were used to rank drought performance of species, and the greenhouse desiccation studies were used to determine the conditions of moribund plants. Our conclusion is that the desiccation tolerance of moribund plants correlated with field assessment of drought-performance for the five species (r(2) > 0.94).  相似文献   
993.
In mouse embryos, germ cells arise during gastrulation and migrate to the early gonad. First, they emerge from the primitive streak into the region of the endoderm that forms the hindgut. Later in development, a second phase of migration takes place in which they migrate out of the gut to the genital ridges. There, they co-assemble with somatic cells to form the gonad. In vitro studies in the mouse, and genetic studies in other organisms, suggest that at least part of this process is in response to secreted signals from other tissues. Recent genetic evidence in zebrafish has shown that the interaction between stromal cell-derived factor 1 (SDF1) and its G-protein-coupled receptor CXCR4, already known to control many types of normal and pathological cell migrations, is also required for the normal migration of primordial germ cells. We show that in the mouse, germ cell migration and survival requires the SDF1/CXCR4 interaction. First, migrating germ cells express CXCR4, whilst the body wall mesenchyme and genital ridges express the ligand SDF1. Second, the addition of exogenous SDF1 to living embryo cultures causes aberrant germ cell migration from the gut. Third, germ cells in embryos carrying targeted mutations in CXCR4 do not colonize the gonad normally. However, at earlier stages in the hindgut, germ cells are unaffected in CXCR4(-/-) embryos. Germ cell counts at different stages suggest that SDF1/CXCR4 interaction also mediates germ cell survival. These results show that the SDF1/CXCR4 interaction is specifically required for the colonization of the gonads by primordial germ cells, but not for earlier stages in germ cell migration. This demonstrates a high degree of evolutionary conservation of part of the mechanism, but also an area of evolutionary divergence.  相似文献   
994.
995.
Tight junctions (TJs) regulateparacellular permeability across epithelia and vary widely in theirtransepithelial electrical resistance (TER) and charge selectivity. Theclaudin family of transmembrane proteins influences these properties.We previously reported that claudin-4 increased TER ~300% whenexpressed in low-resistance Madin-Darby canine kidney (MDCK) II cellsand decreased the paracellular permeability for Na+ morethan Cl (Van Itallie C, Rahner C, and Anderson JM.J Clin Invest 107: 1319-1327, 2001). Incomparison, we report here that expression of claudin-2 increases TERby only ~20% and does not change the ionic selectivity of MDCK IIcells from their cation-selective background. To test whether theextracellular domains of claudins-4 and -2 determine their uniqueparacellular properties, we determined the effects of interchangingthese domains between claudins-4 and -2. Inducible expression ofwild-type claudins and extracellular domain chimeras increased both thenumber and depth of fibrils, but the characteristic fibril morphologiesof claudin-4 or -2 were not altered by switching extracellular domains.Like claudin-4, chimeras expressing the first or both extracellulardomains of claudin-4 on claudin-2 increased TER severalfold andprofoundly decreased the permeability of Na+ relative toCl. In contrast, chimeras expressing the first or bothextracellular domains of claudin-2 on claudin-4 increased the TER byonly ~60 and ~40%, respectively, and only modestly altered chargeselectivity. These results support a model in which the claudins createparacellular channels and the first extracellular domain is sufficientto determine both paracellular charge selectivity and TER.

  相似文献   
996.
The spin-lattice relaxation times (T(1)) for the reduced quinone acceptors Q(A)(-.) and Q(B)(-.), and the intermediate pheophytin acceptor phi(-.), were measured in native photosynthetic reaction centers (RC) containing a high spin Fe(2+) (S = 2) and in RCs in which Fe(2+) was replaced by diamagnetic Zn(2+). From these data, the contribution of the Fe(2+) to the spin-lattice relaxation of the cofactors was determined. To relate the spin-lattice relaxation rate to the spin-spin interaction between the Fe(2+) and the cofactors, we developed a spin-dimer model that takes into account the zero field splitting and the rhombicity of the Fe(2+) ion. The relaxation mechanism of the spin-dimer involves a two-phonon process that couples the fast relaxing Fe(2+) spin to the cofactor spin. The process is analogous to the one proposed by R. Orbach (Proc. R. Soc. A. (Lond.). 264:458-484) for rare earth ions. The spin-spin interactions are, in general, composed of exchange and dipolar contributions. For the spin dimers studied in this work the exchange interaction, J(o), is predominant. The values of J(o) for Q(A)(-.)Fe(2+), Q(B)(-.)Fe(2+), and phi(-.)Fe(2+) were determined to be (in kelvin) -0.58, -0.92, and -1.3 x 10(-3), respectively. The |J(o)| of the various cofactors (obtained in this work and those of others) could be fitted with the relation exp(-beta(J)d), where d is the distance between cofactor spins and beta(J) had a value of (0.66-0.86) A(-1). The relation between J(o) and the matrix element |V(ij)|(2) involved in electron transfer rates is discussed.  相似文献   
997.
Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.  相似文献   
998.
Bryophytes are a non-monophyletic group of three major lineages (liverworts, hornworts, and mosses) that descend from the earliest branching events in the phylogeny of land plants. We postulate that desiccation tolerance is a primitive trait, thus mechanisms by which the first land plants achieved tolerance may be reflected in how extant desiccation-tolerant bryophytes survive drying. Evidence is consistent with extant bryophytes employing a tolerance strategy of constitutive cellular protection coupled with induction of a recovery/repair mechanism upon rehydration. Cellular structures appear intact in the desiccated state but are disrupted by rapid uptake of water upon rehydration, but cellular integrity is rapidly regained. The photosynthetic machinery appears to be protected such that photosynthetic activity recovers quickly. Gene expression responds following rehydration and not during drying. Gene expression is translationally controlled and results in the synthesis of a number of proteins, collectively called rehydrins. Some prominent rehydrins are similar to Late Embryogenesis Abundant (LEA) proteins, classically ascribed a protection function during desiccation. The role of LEA proteins in a rehydrating system is unknown but data indicates a function in stabilization and reconstitution of membranes. Phylogenetic studies using a Tortula ruralis LEA-like rehydrin led to a re-examination of the evolution of desiccation tolerance. A new phylogenetic analysis suggests that: (i) the basic mechanisms of tolerance seen in modern day bryophytes have changed little from the earliest manifestations of desiccation tolerance in land plants, and (ii) vegetative desiccation tolerance in the early land plants may have evolved from a mechanism present first in spores.  相似文献   
999.
Helical histidine phosphotransferase (HPt) domains play a central role in many aspects of bacterial signal transduction. The 0.98 A resolution crystallographic structure of the amino-terminal HPt domain (P1) from the chemotaxis kinase CheA of Thermotoga maritima reveals a remarkable degree of structural heterogeneity within a four-helix bundle. Two of the four helices have alternate main-chain conformations that differ by a 1.3-1.7A shift along the bundle axis. These dual conformers were only resolved with atomic resolution diffraction data and their inclusion significantly improved refinement statistics. Neither conformer optimizes packing within the helical core, consistent with their nearly equal refined occupancies. Altered hydrogen bonding within an inter-helical loop may facilitate transition between conformers. Two discrete structural states rather than a continuum of closely related conformations indicates an energetic barrier to conversion between conformers in the crystal at 100K, although many more states are expected in solution at physiological temperatures. Anisotropic atomic thermal B factors within the two conformers indicate modest overall atomic displacement that is largest perpendicular to the helical bundle and not along the direction of apparent motion. Despite the conformational heterogeneity of P1 in the crystal at low temperature, the protein displays high thermal stability in solution (T(m)=100 degrees C). Addition of a variable C-terminal region that corresponds to a mobile helix in other CheA structures significantly narrows the temperature width of the unfolding transition and may affect domain dynamics. Helices that compose the kinase recognition site and contain the phospho-accepting His45 do not have alternate conformations. In this region, atomic resolution provides detailed structural parameters for a conserved hydrogen-bonding network that tunes the reactivity of His45. A neighboring glutamate (E67), essential for phosphotransferase activity hydrogen bonds directly to His45 N(delta1). E67 generates a negative electrostatic surface surrounding the reactive His that is conserved by most CheA kinases, but absent in related phosphotransferase proteins. The P1 conformations that we observe are likely relevant to other helical or coiled-coil proteins and may be important for generating switches in signaling processes.  相似文献   
1000.
The eukaryotic origin recognition complex (ORC) selects the genomic sites where prereplication complexes are assembled and DNA replication begins. In proliferating mammalian cells, ORC activity appears to be regulated by reducing the affinity of the Orc1 subunit for chromatin during S phase and then preventing reformation of a stable ORC-chromatin complex until mitosis is completed and a nuclear membrane is assembled. Here we show that part of the mechanism by which this is accomplished is the selective association of Orc1 with Cdk1 (Cdc2)/cyclin A during the G(2)/M phase of cell division. This association accounted for the appearance in M-phase cells of hyperphosphorylated Orc1 that was subsequently dephosphorylated during the M-to-G(1) transition. Moreover, inhibition of Cdk activity in metaphase cells resulted in rapid binding of Orc1 to chromatin. However, chromatin binding was not mediated through increased affinity of Orc1 for Orc2, suggesting that additional events are involved in the assembly of functional ORC-chromatin sites. These results reveal that the same cyclin-dependent protein kinase that initiates mitosis in mammalian cells also concomitantly inhibits assembly of functional ORC-chromatin sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号