首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1018篇
  免费   146篇
  2022年   14篇
  2021年   14篇
  2019年   14篇
  2017年   16篇
  2016年   19篇
  2015年   25篇
  2014年   25篇
  2013年   39篇
  2012年   47篇
  2011年   54篇
  2010年   27篇
  2009年   20篇
  2008年   36篇
  2007年   46篇
  2006年   28篇
  2005年   45篇
  2004年   38篇
  2003年   40篇
  2002年   39篇
  2001年   20篇
  2000年   15篇
  1999年   13篇
  1998年   22篇
  1997年   20篇
  1995年   9篇
  1994年   9篇
  1993年   15篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   14篇
  1988年   19篇
  1987年   16篇
  1986年   11篇
  1985年   12篇
  1984年   16篇
  1981年   17篇
  1980年   11篇
  1979年   22篇
  1978年   19篇
  1977年   15篇
  1976年   15篇
  1974年   21篇
  1973年   16篇
  1971年   9篇
  1970年   13篇
  1969年   16篇
  1968年   11篇
  1967年   10篇
  1964年   9篇
排序方式: 共有1164条查询结果,搜索用时 31 毫秒
101.
102.
Postprandial hypotension is an important clinical problem, particularly in the elderly. 5-Hydroxytryptamine3 (5-HT3) mechanisms may be important in the regulation of splanchnic blood flow and blood pressure (BP), and in mediating the effects of small intestinal nutrients on gastrointestinal motility. The aims of this study were to evaluate the effects of the 5-HT3 antagonist granisetron on the BP, heart rate (HR), and antropyloroduodenal (APD) motility responses to intraduodenal glucose in healthy older subjects. Ten subjects (5 male, 5 female, aged 65-76 yr) received an intraduodenal glucose infusion (3 kcal/min) for 60 min (t = 0-60 min), followed by intraduodenal saline for a further 60 min (t = 60-120 min) on 2 days. Granisetron (10 microg/kg) or control (saline) was given intravenously at t = -25 min. BP (systolic and diastolic), HR, and APD pressures were measured. Pressure waves in the duodenal channel closest ("local") to the infusion site were quantified separately. During intraduodenal glucose, there were falls in systolic and diastolic BP and a rise in HR (P < 0.0001 for all); granisetron had no effect on these responses. Granisetron suppressed the number and amplitude (P < 0.05 for both) of local duodenal pressures during intraduodenal glucose. Otherwise, the effects of intraduodenal glucose on APD motility did not differ between study days. We conclude that in healthy older subjects, 5-HT3 mechanisms modulate the local duodenal motor effects of, but not the cardiovascular responses to, small intestinal glucose.  相似文献   
103.
Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.  相似文献   
104.
Dwarfing of fruit trees is often achieved through the use of dwarfing rootstocks. Dwarf trees are characterized by sustained reductions in vegetative growth during the lifetime of the tree. The dwarfing mechanism is not well understood, but it has been hypothesized that hydraulic properties of the rootstock and the graft union are involved. It is hypothesized here that leaf- or stem-specific resistance of at least one hydraulic component of the water transport system would be negatively correlated with rootstock 'vigour', and this could be useful for selection of rootstocks. Hydraulic resistance (R) of fully grown apple trees on a variety of rootstocks of different 'vigours' was measured. Most measurements were with the evaporative flux (EF) method, where water uptake measured with sap flow sensors was related to the pressure gradient from soil (taken as pre-dawn leaf) and midday root (taken as covered root-sucker), stem (from covered leaf), and exposed and shaded leaf water potentials (Psi(l)). R of trees on dwarfing M9 rootstock was compared with that of more vigorous MM106 and MM111 rootstocks in Israel and Vermont, USA. In Israel, M9 consistently had higher leaf-specific hydraulic resistance (R(l)) in the soil to scion stem pathway, but this difference was only significant for one summer. R was larger in M9 between the root and stem, implicating the graft union as the site of increased resistance. In Vermont, R(l) of 9- and 10-year-old trees on six rootstocks of various vigours was not consistently related to vigour, and stem-specific resistance (R(s)) increased with increasing vigour. High pressure flow meter (HPFM) measurements gave a lower R than the EF method in all but one case, perhaps indicating a significant amount of xylem dysfunction in these trees, and demonstrated the increased resistivity of stem sections that included dwarf graft unions as compared with non-graft stem sections. It is concluded that stem- and leaf-specific R are not consistently positively correlated with dwarfing, although the increased resistivity of the graft union in dwarfing rootstocks may influence the transport of water and other elements across the graft union, and therefore be involved in the dwarfing mechanism.  相似文献   
105.
A library of new thalidomide analogues containing an olefin functionality were synthesised using a Heck cross coupling reaction from their aryl halogenated precursor. All analogues were tested for their ability to inhibit the synthesis of the proinflammatory cytokine Tumour Necrosis Factor (TNF). Compounds 22, 29, 33 and 37 were the most effective in this assay inhibiting TNF expression 50%, 69%, 52% and 50%, respectively.  相似文献   
106.
107.
Wetlands Ecology and Management - The unprecedented size of the deepwater horizon oil spill and scope of the subsequent response elicited intense and sustained interest in microbial responses to...  相似文献   
108.
A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.Vulnerability curves (VCs) have been viewed as a good measure of the drought resistance of woody stems (Cochard et al., 2013). Increasing drought increases the xylem tension (T) and eventually induces cavitation of the water in conduits when the T exceeds a certain threshold (Sperry and Tyree, 1988; Sperry et al., 1996). A cavitated vessel first fills with water vapor and eventually fills with air at atmospheric pressure because of Henry’s law, which describes gas equilibrium at the water/air interface. The time required for the progress mainly depends on the penetration rate of air into the recently cavitated vessel lumen via diffusion through the liquid phase.Previous studies were made about how fast bubbles disappear in embolized stems because of the solubility of air in water when water pressure exceeds atmospheric pressure, and the process takes 10 to 100 h depending on conditions (Tyree and Yang, 1992; Yang and Tyree, 1992). The tempo of bubble disappearance was measured by following the rise in stem hydraulic conductivity (kh) versus time. The theory of Yang and Tyree (1992) relied on the same principles used in this article (Henry’s law, Fick’s law, and the ideal gas law), but modeling and experiments were done at pressures between 1 and 3 times atmospheric pressure rather than subatmospheric pressure (negative pressure). However, much less is known about the tempo of bubble formation in recently cavitated vessels (Brodersen et al., 2013). If the progress of embolus formation takes several minutes, then no changes in conductivity could be observed with available techniques, but if it takes hours, then the tempo of bubbles can be studied by rapidly inducing cavitation with increasing T and after cavitation induction measuring the influence of T on stem kh as T is reduced gradually to zero. If air bubbles are at a pressure (bubble pressure [Pb*]) lower than a threshold near atmospheric pressure, bubbles ought to collapse when T decreases according to the ideal gas law and Henry’s law (see theory below). The consequence of bubble collapse will be partial filling of vessels with water and the rest with air bubbles. The partial filling of water in a recently cavitated vessel ought to increase the lumen conductivity from zero and connect the embolized vessel to adjacent conductive vessels and, hence, ought to increase the conductivity of the stem by an additional flow pathway (Wheeler et al., 2005; Hacke et al., 2006). The vascular system of stems is a complicated network with vessels of different lengths, diameters, and orientation (Evert, 2006), and the complex vessel network makes the additional pathway possible. Therefore, bubble collapse could be detected through the impact of T on the kh of the stems in a way that is very similar to the methods used by Yang and Tyree (1992) but requires a more sophisticated centrifuge technique to induce embolism.Many studies have assumed that the bubble pressure in newly cavitated vessels ought to be near atmospheric pressure, and no corrections for bubble pressure have been taken in measuring percentage loss of conductivity (PLC) when T is lower than a critical threshold (Li et al., 2008; Wang et al., 2014a). As a result of bubble collapse, the measured kh under a mild T should be higher than that under high T (greater than 0.5 MPa). And the lower the initial bubble pressure, the more bubbles collapse with decreasing T.The aim of this study is to construct a model that estimates average bubble pressure in partly embolized stems from the functional dependence of kh on T, and with this model, we can further our understanding of the tempo of bubble formation in stems. Here, we will argue that the tempo of bubble formation is in two phases: an initial rapid phase (seconds to minutes to complete) followed by a much slower phase (many hours to complete). Since there is no method for measuring the rapid phase, the rapid phase will be described theoretically below. Next, a theory will be developed that allows the estimation of the pressure of air in recently formed bubbles in vessels during the slow phase. An experimental validation of the model will follow that will yield values of bubble pressure within the first 1 to 2 h following the fast phase of embolism formation in vessels.  相似文献   
109.
110.
Transcellular Cl movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na+-K+-2Cl cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl uptake pathway concentrates Cl ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl/HCO3 exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2−/− mice. In contrast, saliva secretion was reduced by 35% in Ae4−/− mice. The decrease in salivation was not related to loss of Na+-K+-2Cl cotransporter or Na+/H+ exchanger activity in Ae4−/− mice but correlated with reduced Cl uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl/HCO3 exchanger activity revealed that HCO3-dependent Cl uptake was reduced in the acinar cells of Ae2−/− and Ae4−/− mice. Moreover, Cl/HCO3 exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl/HCO3 exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号