首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   37篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   10篇
  2013年   9篇
  2012年   12篇
  2011年   14篇
  2010年   11篇
  2009年   8篇
  2008年   19篇
  2007年   13篇
  2006年   10篇
  2005年   5篇
  2004年   8篇
  2003年   17篇
  2002年   14篇
  2001年   6篇
  2000年   14篇
  1999年   8篇
  1998年   8篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   13篇
  1991年   5篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   5篇
  1984年   3篇
  1983年   4篇
  1981年   4篇
  1979年   4篇
  1978年   2篇
  1976年   3篇
  1975年   2篇
  1971年   2篇
  1967年   2篇
  1954年   1篇
  1943年   1篇
  1942年   1篇
排序方式: 共有335条查询结果,搜索用时 15 毫秒
31.
Single-cell transcript analysis of pancreas development   总被引:9,自引:0,他引:9  
  相似文献   
32.
Endothelial signaling during development   总被引:15,自引:0,他引:15  
Blood vessels perfuse all tissues in the body and mediate vital metabolic exchange between tissues and blood. Increasing evidence, however, points to a direct role for paracrine signaling between blood vessel cells and surrounding target organ cells, during embryonic development and cell differentiation. Understanding the nature of this signaling and its heterogeneity, both in the embryo and in adult tissues, may not only provide insights into mechanisms for normal developmental cell fate decisions, but could also lead to novel targeted therapeutic approaches for a variety of diseases such as heart disease, diabetes or cancer.  相似文献   
33.
The vertebrate head is a complex assemblage of cranial specializations, including the central and peripheral nervous systems, viscero- and neurocranium, musculature and connective tissue. The primary differences that exist between vertebrates and other chordates relate to their craniofacial organization. Therefore, evolution of the head is considered fundamental to the origins of vertebrates (Gans and Northcutt, 1983). The transition from invertebrate to vertebrate chordates was a multistep process, involving the formation and patterning of many new cell types and tissues. The evolution of early vertebrates, such as jawless fish, was accompanied by the emergence of a specialized set of cells, called neural crest cells which have long held a fascination for developmental and evolutionary biologists due to their considerable influence on the complex development of the vertebrate head. Although it has been classically thought that protochordates lacked neural crest counterparts, the recent identification and characterization of amphioxus and ascidian genes homologous to those involved in vertebrate neural crest development challenges this idea. Instead it suggests thatthe neural crest may not be a novel vertebrate cell population, but could have in fact originated from the protochordate dorsal midline epidermis. Consequently, the evolution of the neural crest cells could be reconsidered in terms of the acquisition of new cell properties such as delamination-migration and also multipotency which were key innovations that contributed to craniofacial development. In this review we discuss recent findings concerning the inductive origins of neural crest cells, as well as new insights into the mechanisms patterning this cell population and the subsequent influence this has had on craniofacial evolution.  相似文献   
34.
In mammals, the three classical ras genes encode four highly homologous proteins, N-Ras, H-Ras, and the isoforms K-Ras 4A and 4B. Previous studies have shown that K-ras is essential for mouse development and that while K-ras 4A and 4B are expressed during development, K-ras 4A expression is regulated temporally and spatially and occurs in adult kidney, intestine, stomach, and liver. In the present study, the pattern of K-ras 4A expression was examined in a wide range of wild-type adult mouse tissues, and gene targeting was used to generate K-ras 4A-deficient mice to examine its role in development. It was found that K-ras 4A is also expressed in uterus, lung, pancreas, salivary glands, seminal vesicles, bone marrow cells, and cecum, where it was the major K-Ras isoform expressed. Mating between K-ras(tmDelta4A/+) mice produced viable K-ras(tmDelta4A/tmDelta4A) offspring with the expected Mendelian ratios of inheritance, and these mice expressed the K-ras 4B splice variant only. K-ras(tmDelta4A/tmDelta4A) mice were fertile and showed no histopathological abnormalities on inbred (129/Ola) or crossbred (129/Ola x C57BL/6) genetic backgrounds. The results demonstrate that K-Ras 4A, like H- and N-Ras, is dispensable for normal mouse development, at least in the presence of functional K-Ras 4B.  相似文献   
35.
The full three-dimensional structure of the catalytic domain of human collagenase-3 (MMP-13) complexed to a potent, sulfonamide hydroxamic acid inhibitor (CGS 27023) has been determined by NMR spectroscopy. The results reveal a core domain for the protein consisting of three alpha-helices and five beta-sheet strands with an overall tertiary fold similar to the catalytic domains of other matrix metalloproteinase family members. The S1' pocket, which is the major site of hydrophobic binding interaction, was found to be a wide cleft spanning the length of the protein and presenting facile opportunity for inhibitor extension deep into the pocket. Comparison with the reported X-ray structure of collagenase-3 showed evidence of flexibility for the loop region flanking the S1' pocket in both NMR and X-ray data. This flexibility was corroborated by NMR dynamics studies. Inhibitor binding placed the methoxy phenyl ring in the S1' pocket with the remainder of the molecule primarily solvent-exposed. The binding mode for this inhibitor was found to be similar with respect to stromelysin-1 and collagenase-1; however, subtle comparative differences in the interactions between inhibitor and enzyme were observed for the three MMPs that were consistent with their respective binding potencies.  相似文献   
36.
Trisaccharides, methyl alpha-L-fucopyranosyl-(1-->2)-beta-D-galactopyranosyl-(1-->2)-alpha-D-xy lopyranoside and methyl alpha-L-fucopyranosyl-(1-->2)-beta-D-galactopyranosyl-(1-->2)-beta-D-xyl opyranoside, which are related to the side chain of xyloglucan have been synthesised. The beta-galactopyranosyl linkage of each was constructed using silver trifluoromethanesulfonate-promoted glycosylations of 2-O-acetyl-3,4,6-tri-O-benzyl-beta-D-galactopyranosyl chloride and the corresponding anomer of methyl 3,4-tri-O-benzyl-D-xylopyranoside. The resulting disaccharides were deacetylated and fucosylated using assisted halide reactions with tri-O-benzyl-alpha-L-fucopyranosyl bromide. Hydrogenolytic debenzylation of the resulting protected trisaccharides gave the methyl glycosides of the fucose-containing xyloglucan side chain. The structure of methyl alpha-L-fucopyranosyl-(1-->2)-beta-D-galactopyranosyl-(1-->2)-alpha-D-xy lopyranoside as the monohydrate was confirmed by an X-ray crystallographic study.  相似文献   
37.
The molecular ordering of cellulose, including its crystallinity,in the unlignified primary cell walls of three monocotyledons(Italian ryegrass, pineapple, and onion) and one dicotyledon(cabbage) was characterized by solid-state 13C NMR spectroscopy.These species were chosen because their primary cell walls havedifferent non-cellulosic polysaccharides and this may affectthe molecular ordering of cellulose. Values of the proton rotating-framerelaxation [T1p(H)] and spin-spin relaxation [T2(H)] time constantsshowed that the cellulose in the cell walls of all four specieswas in a crystalline rather than an amorphous state. Furthermore,a resolution enhancement procedure showed that the triclinic(I) and the monoclinic (I) crystal forms of cellulosewere present in similar proportions in these cell walls. However,the calculated cross-sectional dimensions of the cellulose crystallitesvaried among the cell walls (in the range 2–3 nm): thelargest were in the Italian ryegrass, the smallest were in theonion and cabbage, and those of intermediate size were in thepineapple. The crystallite dimensions may thus be affected bythe non-cellulosic polysaccha-ride compositions of the cellwalls. 4Present address: Food Science Postgraduate Programme, Departmentof Chemistry, The University of Auckland, Private Bag 92019,Auckland, New Zealand.  相似文献   
38.
Heparins/heparan sulfates modulate the function of proteins and cell membranes in numerous biological systems including normal and disease processes in humans. Heparin has been used for many years as an anticoagulant, and anticoagulant heparin-mimetics were developed several decades ago by chemical sulfation of non-mammalian polysaccharides, e.g., an antithrombotic sulfated xylan. This pharmaceutical, which comprises a mixture of sulfated oligoxylans, also mimics most other biological actions of natural heparins in vitro, including inhibition of the human immunodeficiency virus, but the molecular basis for these actions has been unclear. Here, numerous Components of the sulfated oligoxylan mixture were isolated and when bioassayed in the case of anti-HIV-1 infectivity revealed that a structural specificity underlines the capacity of sulfated xylan to inhibit HIV-1, rather than a non-specific mechanism. Components were isolated by chromatographic fractionation through Bio-Gel P10 in 0.5M ammonium bicarbonate. This fractionation revealed an elution range associated with apparent molecular weights of 22 000 to <1500 relative to standard heparin and heparan sulfates and newly prepared sulfated oligosaccharide standards. Components were characterized by metachromatic absorption spectroscopy, ultracentrifugation, GlcA analysis, and potency against HIV-1 infectivity, both in the tetrazolium cytotoxicity assay and in syncytium-forming assays, in CD4-lymphocytes. Structural specificity was indicated by the differential potencies exhibited by the Components: Highest activity (cytotoxicity) was exhibited by Components in the chromatographic region 5500 in mass (50% effective (inhibitory) concentration=0.5–0.7 g ml–1 in the first fractionation series, and 0.1–0.5 g ml–1 in a second series). The potency declined sharply below 5400 in mass, but with an exception; a second structure exhibiting relatively high potency eluted among low-mass oligosaccharides which had an average size of a nonomer. Components displayed differential potencies also against the syncytium-forming infectivity of HIV-1. The high potency against syncytium-formation was retained by Components down to a minimum size of about 4500 in mass, smaller than the 5400 required above. One in ten of the 1,4-linked xyloses in the native xylan are substituted with a monomeric 1,2 DGlcA branch. We have speculated that pharmaceutical actions of sulfated xylan might be related to structures involving the -D linked substituents and this was examined using a space-filling model of a sulfated octaxylan and by analyses of Components for GlcA content. Understanding structure/function relations in the heparin-like actions of these agents would be of general significance for the careful examination of their potential clinical usefulness in many human processes modulated by heparins, including AIDS.  相似文献   
39.
Sequencing mitochondrial and chloroplast genomes has become an integral part in understanding the genomic machinery and the phylogenetic histories of green algae. Previously, only three chloroplast genomes (Oltmannsiellopsis viridis, Pseudendoclonium akinetum, and Bryopsis hypnoides) and two mitochondrial genomes (O. viridis and P. akinetum) from the class Ulvophyceae have been published. Here, we present the first chloroplast and mitochondrial genomes from the ecologically and economically important marine, green algal genus Ulva. The chloroplast genome of Ulva sp. was 99,983 bp in a circular-mapping molecule that lacked inverted repeats, and thus far, was the smallest ulvophycean plastid genome. This cpDNA was a highly compact, AT-rich genome that contained a total of 102 identified genes (71 protein-coding genes, 28 tRNA genes, and three ribosomal RNA genes). Additionally, five introns were annotated in four genes: atpA (1), petB (1), psbB (2), and rrl (1). The circular-mapping mitochondrial genome of Ulva sp. was 73,493 bp and follows the expanded pattern also seen in other ulvophyceans and trebouxiophyceans. The Ulva sp. mtDNA contained 29 protein-coding genes, 25 tRNA genes, and two rRNA genes for a total of 56 identifiable genes. Ten introns were annotated in this mtDNA: cox1 (4), atp1 (1), nad3 (1), nad5 (1), and rrs (3). Double-cut-and-join (DCJ) values showed that organellar genomes across Chlorophyta are highly rearranged, in contrast to the highly conserved organellar genomes of the red algae (Rhodophyta). A phylogenomic investigation of 51 plastid protein-coding genes showed that Ulvophyceae is not monophyletic, and also placed Oltmannsiellopsis (Oltmannsiellopsidales) and Tetraselmis (Chlorodendrophyceae) closely to Ulva (Ulvales) and Pseudendoclonium (Ulothrichales).  相似文献   
40.
Driving human pluripotent stem cells (hPSCs) into specific lineages is an inefficient and challenging process. We show that a potent Src inhibitor, PP1, regulates expression of genes involved in the G1 to S phase transition of the cell cycle, activates proteins in the retinoblastoma family, and subsequently increases the differentiation propensities of hPSCs into all three germ layers. We further demonstrate that genetic suppression of Src regulates the activity of the retinoblastoma protein and enhances the differentiation potential of hPSCs across all germ layers. These positive effects extend beyond the initial germ layer specification and enable efficient differentiation at subsequent stages of differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号