首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85篇
  免费   3篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   6篇
  2012年   3篇
  2011年   8篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   6篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1993年   1篇
  1992年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
  1968年   2篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
  1961年   1篇
  1959年   1篇
  1958年   1篇
  1957年   1篇
  1956年   1篇
  1954年   1篇
  1953年   2篇
  1951年   1篇
排序方式: 共有88条查询结果,搜索用时 741 毫秒
21.
The aim of this study was to immunolocalise perlecan in ovine vertebral growth plate (VGP) and cartilaginous endplate (CEP) cartilages using a monoclonal antibody (MAb A76) directed to a core protein epitope in perlecan domain-I, and to compare and contrast its localisation patterns with known cartilage matrix components. Perlecan was a prominent pericellular component of mature hypertrophic chondrocytes in the VGP and CEP in newborn 2- to 5-day-old sheep. Type I, II, VI and X collagen, chondroitin-4 and 6-sulphate, 7-D-4 chondroitin sulphate isomer proteoglycan epitope, keratan sulphate, aggrecan core protein, hyaluronan (HA) and hyaluronan binding proteins (HABPs) each had distinct localisation patterns in the VGP and CEP. Type X collagen was a prominent component of the VGP but was undetectable in the CEP. Aggrecan was strongly localised extracellularly throughout the VGP and CEP but increased cell-associated staining was also evident. In contrast to the aforementioned matrix components, HA, HABPs and perlecan were localised strongly to the pericellular matrices of the hypertrophic VGP and CEP chondrocytes apparently indicating an important role for these components in terminal chondrocyte differentiation.  相似文献   
22.
Proteome analysis of highly immunoreactive proteins of Helicobacter pylori   总被引:1,自引:0,他引:1  
Background. Identification of the immunoreactive proteins of Helicobacter pylori is important for the development of both diagnostic tests and vaccines relating to the organism. Our aim was to determine whether there are significant differences between human IgG and IgA reactivities to individual H. pylori proteins, and whether patterns of immunoreactivity are sustained across different strains of H. pylori. Method. The total complement of protein from seven strains of H. pylori was resolved by two‐dimensional polyacrylamide gel electrophoresis (2D‐PAGE). Proteins were transferred electrophoretically onto polyvinylene difluoride (PVDF) membranes, which were probed with sera pooled either from H. pylori‐infected patients, or noninfected (control) patients. Highly immunoreactive proteins were detected using chromogenic enzyme‐antibody conjugates recognising either serum IgG or IgA. These proteins were then characterised by tryptic peptide‐mass fingerprinting using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Results. Highly immunoreactive proteins were detected which were common to all seven strains, and recognised by both immunoglobulin subclasses. The proteins appear to be localised in five groups. Protein analysis established that these groups encompass multiple isoforms of chaperonin HspB (two subgroups); urease β‐subunit UreB; elongation factor EF‐Tu; and flagellin FlaA. The pattern of highly immunoreactive proteins was strongly conserved across the seven strains. Conclusion. These results suggest that within a tightly defined region on the H. pylori proteome map there are five groups of proteins that are highly reactive to both IgG and IgA. Our analysis suggests it is unlikely that the highly immunoreactive clusters harbour any significant proteins other than isoforms of HspB, UreB, EF‐Tu and FlaA, and that, with the partial exception of FlaA, these clusters are strongly conserved across all seven strains.  相似文献   
23.
Human basement membrane heparan sulfate proteoglycan (HSPG) perlecan binds and activates fibroblast growth factor (FGF)-2 through its heparan sulfate (HS) chains. Here we show that perlecans immunopurified from three cellular sources possess different HS structures and subsequently different FGF-2 binding and activating capabilities. Perlecan isolated from human umbilical arterial endothelial cells (HUAEC) and a continuous endothelial cell line (C11 STH) bound similar amounts of FGF-2 either alone or complexed with FGFRalpha1-IIIc or FGFR3alpha-IIIc. Both perlecans stimulated the growth of BaF3 cell lines expressing FGFR1b/c; however, only HUAEC perlecan stimulated those cells expressing FGFR3c, suggesting that the source of perlecan confers FGF and FGFR binding specificity. Despite these differences in FGF-2 activation, the level of 2-O- and 6-O-sulfation was similar for both perlecans. Interestingly, perlecan isolated from a colon carcinoma cell line that was capable of binding FGF-2 was incapable of activating any BaF3 cell line unless the HS was removed from the protein core. The HS chains also exhibited greater bioactivity after digestion with heparinase III. Collectively, these data clearly demonstrate that the bioactivity of HS decorating a single PG is dependent on its cell source and that subtle changes in structure including secondary interactions have a profound effect on biological activity.  相似文献   
24.
Microorganisms are associated with a variety of ancient geological materials. However, conclusive proof that these organisms are as old as the geological material and not more recent introductions has generally been lacking. Over the years, numerous reports of the isolation of ancient bacteria from geological materials have appeared. Most of these have suffered from the fact that the protocol for the surface sterilization of the sample was either poorly defined, inadequate or rarely included data to validate the overall effectiveness of the sterilization protocol. With proper sterility validation and isolation protocol, a legitimate claim for the isolation of an ancient microbe can be made. Biochemical, physiological, or morphological data indicate that these ancient microbes are not significantly different from modern isolates. As the role (decomposition) of modern and ancient microbes has not changed over time, it is probably unreasonable to expect these organisms to be vastly different. A discussion on the reasons for the homogeneity of ancient and modern microbes is presented. Journal of Industrial Microbiology & Biotechnology (2002) 28, 32–41 DOI: 10.1038/sj/jim/7000174 Received 20 May 2001/ Accepted in revised form 16 June 2001  相似文献   
25.
Neurofascins are required to establish axonal domains for saltatory conduction   总被引:14,自引:0,他引:14  
Voltage-gated sodium channels are concentrated in myelinated nerves at the nodes of Ranvier flanked by paranodal axoglial junctions. Establishment of these essential nodal and paranodal domains is determined by myelin-forming glia, but the mechanisms are not clear. Here, we show that two isoforms of Neurofascin, Nfasc155 in glia and Nfasc186 in neurons, are required for the assembly of these specialized domains. In Neurofascin-null mice, neither paranodal adhesion junctions nor nodal complexes are formed. Transgenic expression of Nfasc155 in the myelinating glia of Nfasc-/- nerves rescues the axoglial adhesion complex by recruiting the axonal proteins Caspr and Contactin to the paranodes. However, in the absence of Nfasc186, sodium channels remain diffusely distributed along the axon. Our study shows that the two major Neurofascins play essential roles in assembling the nodal and paranodal domains of myelinated axons; therefore, they are essential for the transition to saltatory conduction in developing vertebrate nerves.  相似文献   
26.
Mycobacterium tuberculosis (M.tb) is a leading cause of global infectious mortality. The pathogenesis of tuberculosis involves inhibition of phagosome maturation, leading to survival of M.tb within human macrophages. A key determinant is M.tb-induced inhibition of macrophage sphingosine kinase (SK) activity, which normally induces Ca2+ signaling and phagosome maturation. Our objective was to determine the spatial localization of SK during phagocytosis and its inhibition by M.tb. Stimulation of SK activity by killed M.tb, live Staphylococcus aureus, or latex beads was associated with translocation of cytosolic SK1 to the phagosome membrane. In contrast, SK1 did not associate with phagosomes containing live M.tb. To characterize the mechanism of phagosomal translocation, live cell confocal microscopy was used to compare the localization of wild-type SK1, catalytically inactive SK1G82D, and a phosphorylation-defective mutant that does not undergo plasma membrane translocation (SK1S225A). The magnitude and kinetics of translocation of SK1G82D and SK1S225A to latex bead phagosomes were indistinguishable from those of wild-type SK1, indicating that novel determinants regulate the association of SK1 with nascent phagosomes. These data are consistent with a model in which M.tb inhibits both the activation and phagosomal translocation of SK1 to block the localized Ca2+ transients required for phagosome maturation.  相似文献   
27.
Lymphedema related to lymphatic filariasis (LF) is a disabling condition that commonly manifests in adolescence. Fifty-three adolescents, 25 LF infected and 28 LF non-infected, in age and sex-matched groups, using the Binax ICT rapid card test for filarial antigen were recruited to the study. None of the participants had overt signs of lymphedema. Lymphedema assessment measures were used to assess lower limb tissue compressibility (tonometry), limb circumference (tape measure), intra- and extra-cellular fluid distribution (bioimpedance) and joint range of motion (goniometry). The mean tonometric measurements from the left, right, and dominant posterior thighs were significantly larger in participants with LF compared to participants who had tested negative for LF (p = 0.005, p = 0.004, and p = 0.003, respectively) indicating increased tissue compressibility in those adolescents with LF. ROC curve analysis to define optimal cut-off of the tonometry measurements indicated that at 3.5, sensitivity of this potential screening test is 100% (95%-CI = 86.3%, 100%) and specificity is 21.4% (95%-CI = 8.3%, 41.0%). It is proposed that this cut-off can be used to indicate tissue change characteristic of LF in an at-risk population of PNG adolescents. Further longitudinal research is required to establish if all those with tissue change subsequently develop lymphedema. However, thigh tonometry to identify early tissue change in LF positive adolescents may enable early intervention to minimize progression of lymphedema and prioritization of limited resources to those at greatest risk of developing lifetime morbidity.  相似文献   
28.
The aim of this study was to localize perlecan in human fetal spine tissues. Human fetal spines (12-20 weeks; n=6) were fixed in either Histochoice or 10% neutral buffered formalin, routinely processed, paraffin-embedded, and 4-microm sagittal sections were cut and stained with toluidine blue, H&E, and von Kossa. Perlecan, types I, II, IV, and X collagen, CD-31, aggrecan core protein, and native and delta-HS 4, 5 hexuronate stub epitopes were immunolocalized. Toluidine blue staining visualized the cartilaginous vertebral body (VB) rudiments and annular lamellae encompassing the nucleus pulposus (NP). Von Kossa staining identified the VB primary center of ossification. Immunolocalization of type IV collagen, CD-31, and perlecan delineated small blood vessels in the outer annulus fibrosus (AF) and large canals deep within the VBs. Perlecan and type X collagen were also prominently expressed by the hypertrophic vertebral growth plate chondrocytes. Aggrecan was extracellularly distributed in the intervertebral disk (IVD) with intense staining in the posterior AF. Notochordal tissue stained strongly for aggrecan but negatively for perlecan and types I and II collagen. Type I collagen was prominent in the outer AF and less abundant in the NP, while type II collagen was localized throughout the IVD and VB. The immunolocalization patterns observed indicated key roles for perlecan in vasculogenic, chondrogenic, and endochondral ossification processes associated with spinal development.  相似文献   
29.
The objective of this investigation was to examine the physical and performance characteristics of adolescent club volleyball players. Twenty-nine adolescent girls, aged 12 to 17 years (14.31 +/- 1.37) were participants in this investigation. All athletes were members of a competitive volleyball club. The following group values were obtained: height (HT) = 1.69 +/- 0.08 m, weight (WT) = 59.6 +/- 8.2 kg, body fat percentage (BF%) = 20.9 +/- 4.5, lean body mass (LBM) = 46.7 +/- 4.9 kg, modified sit-and-reach (MSR) = 38.7 +/- 7.1 cm, shoulder rotation (SR) = 29.4 +/- 5.6 cm, isometric hand grip (IHG) = 34.5 +/- 5.5 kg, isometric leg strength (ILS) = 77.4 +/- 18.1 kg, vertical jump (VJ) = 35.5 +/- 6.2 cm, standing broad jump (SBJ) =178.8 +/- 20.3 cm, 1-minute sit-ups (SU) = 47.0 +/- 6.7, T-test (TT) = 11.2 +/- 0.8 seconds., shuttle test (SHT) = 9.7 +/- 0.4 seconds, stork stand (SS) = 8.1 +/- 4.1 seconds, serving velocity (SVV) =16.1 +/- 4.5 m.s(-1), and spiking velocity (SKV) = 16.9 +/- 2.4 m.s(-1). For purposes of analysis, players were divided into 2 age groups: 12 to 14 years (group A) and 15 to 17 years (group B). Significant differences (p < 0.05) were found between age groups for the following values: HT, WT, LBM, IHG, ILS, SBJ, and SVV. Values for group B were greater for each variable. Significant correlations include age and IHG (r = 0.75), age and ILS (r = 0.51), age and SBJ (r = 0.67), age and SVV (r = 0.71), LBM and IHG (r = 0.90), LBM and ILS (r = 0.62), LBM and SVV (r = 0.58), SVV and IHG (r = 0.60), and SKV and SS (r = 0.60). Our results suggest that age, experience, LBM, shoulder, hip, and thigh girths, strength, and balance are key physical performance characteristics of adolescent girls who play volleyball. Potentially, this type of information will allow coaches and athletes to identify physical and performance data specific to age groups for purposes of evaluation and player development.  相似文献   
30.
Whitelock JM  Melrose J  Iozzo RV 《Biochemistry》2008,47(43):11174-11183
Perlecan is a ubiquitous pericellular proteoglycan ideally placed to mediate cell signaling events controlling migration, proliferation, and differentiation. Its control of growth factor signaling usually involves interactions with the heparan sulfate chains covalently coupled to the protein core's N-terminus. However, this modular protein core also binds with relatively high affinity to a number of growth factors and surface receptors, thereby stabilizing cell-matrix links. This review will focus on perlecan-growth factor interactions and describe recent advances in our understanding of this highly conserved proteoglycan during development, cancer growth, and angiogenesis. The pro-angiogenic capacities of perlecan that involve proliferative and migratory signals in response to bound growth factors will be explored, as well as the anti-angiogenic signals resulting from interactions between the C-terminal domain known as endorepellin and integrins that control adhesion of cells to the extracellular matrix. These two somewhat diametrically opposed roles will be discussed in light of new data emerging from various fields which converge on perlecan as a key regulator of cell growth and angiogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号