首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5066篇
  免费   453篇
  国内免费   4篇
  2022年   43篇
  2021年   87篇
  2020年   28篇
  2019年   52篇
  2018年   68篇
  2017年   52篇
  2016年   120篇
  2015年   255篇
  2014年   272篇
  2013年   330篇
  2012年   462篇
  2011年   400篇
  2010年   217篇
  2009年   194篇
  2008年   254篇
  2007年   258篇
  2006年   250篇
  2005年   224篇
  2004年   209篇
  2003年   186篇
  2002年   175篇
  2001年   154篇
  2000年   138篇
  1999年   110篇
  1998年   53篇
  1997年   44篇
  1996年   40篇
  1995年   31篇
  1994年   31篇
  1993年   33篇
  1992年   72篇
  1991年   70篇
  1990年   59篇
  1989年   62篇
  1988年   58篇
  1987年   61篇
  1986年   38篇
  1985年   20篇
  1984年   32篇
  1983年   24篇
  1982年   14篇
  1981年   17篇
  1979年   27篇
  1978年   23篇
  1977年   14篇
  1976年   17篇
  1975年   18篇
  1974年   23篇
  1973年   22篇
  1972年   11篇
排序方式: 共有5523条查询结果,搜索用时 15 毫秒
31.
A d-aminoacylase from Alcaligenes faecalis DA1 has been purified to homogeneity by a simple purification procedure with two columns, Fractogel DEAE-650 and HW-50. The specific activity of the purified enzyme was found to be 580 U/mg of protein with N-acetyl-dl-methionine as the reaction substrate. The apparent molecular weight and isoelectric point of this enzyme were determined to be 55,000 and 5.4, respectively.  相似文献   
32.
Three classes of chemically defined tannins, gallotannins, ellagitannins and condensed tannins were examined for their inhibitory activities against purified poly (ADP-ribose) glycohydrolase. Ellagitannins showed higher inhibitory activities than gallotannins. In contrast, condensed tannins, which consist of an epicathechin gallate (ECG) oligomer without a glucose core were not appreciably inhibitory. Kinetic analysis revealed that the inhibition of ellagitannins was competitive with respect to the substrate poly(ADP-ribose), whereas gallotannins exhibited mixed-type inhibition. These results suggest that conjugation with glucose of hexahydroxy-diphenoyl (HHDP) group, which is a unique component of ellagitannins, potentiated the inhibitory activity, and that the structure of ellagitannins may have a functional domain which competes with poly(ADP-ribose) on the poly(ADP-ribose) glycohydrolase molecule.  相似文献   
33.
The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 ester bond of membrane phospholipids. The highly conserved Tyr residues 52 and 73 in the enzyme form hydrogen bonds to the carboxylate group of the catalytic Asp-99. These hydrogen bonds were initially regarded as essential for the interfacial recognition and the stability of the overall catalytic network. The elimination of the hydrogen bonds involving the phenolic hydroxyl groups of the Tyr-52 and -73 by changing them to Phe lowered the stability but did not significantly affect the catalytic activity of the enzyme. The X-ray crystal structure of the double mutant Y52F/Y73F has been determined at 1.93 A resolution to study the effect of the mutation on the structure. The crystals are trigonal, space group P3(1)21, with cell parameters a = b = 46.3 A and c = 102.95 A. Intensity data were collected on a Siemens area detector, 8,024 reflections were unique with an R(sym) of 4.5% out of a total of 27,203. The structure was refined using all the unique reflections by XPLOR to a final R-factor of 18.6% for 955 protein atoms, 91 water molecules, and 1 calcium ion. The root mean square deviation for the alpha-carbon atoms between the double mutant and wild type was 0.56 A. The crystal structure revealed that four hydrogen bonds were lost in the catalytic network; three involving the tyrosines and one involving Pro-68. However, the hydrogen bonds of the catalytic triad, His-48, Asp-99, and the catalytic water, are retained. There is no additional solvent molecule at the active site to replace the missing hydroxyl groups; instead, the replacement of the phenolic OH groups by H atoms draws the Phe residues closer to the neighboring residues compared to wild type; Phe-52 moves toward His-48 and Asp-99 of the catalytic diad, and Phe-73 moves toward Met-8, both by about 0.5 A. The closing of the voids left by the OH groups increases the hydrophobic interactions compensating for the lost hydrogen bonds. The conservation of the triad hydrogen bonds and the stabilization of the active site by the increased hydrophobic interactions could explain why the double mutant has activity similar to wild type. The results indicate that the aspartyl carboxylate group of the catalytic triad can function alone without additional support from the hydrogen bonds of the two Tyr residues.  相似文献   
34.
An Arabidopsis thaliana L. DNA containing the tRNA(TrpUGG) gene was isolated and altered to encode the amber suppressor tRNA(TrpUAG) or the ochre suppressor tRNA(TrpUAA). These DNAs were electroporated into carrot protoplasts and tRNA expression was demonstrated by the translational suppression of amber and ochre nonsense mutations in the chloramphenicol acetyltransferase (CAT) reporter gene. DNAs encoding tRNA(TrpUAG) and tRNA(TrpUAA) nonsense suppressor tRNAs caused suppression of their cognate nonsense codons in CAT mRNAs, with the tRNA(TrpUAG) gene exhibiting the greater suppression under optimal conditions for expression of CAT. The development of these translational suppressors which function in plant cells facilitates the study of plant tRNA gene expression and will make possible the manipulation of plant protein structure and function.  相似文献   
35.
36.
Three proteins, GTPase activating protein (GAP), neurofibromatosis 1 (NF1) and the yeast inhibitory regulator of the RAS-cAMP pathway (IRA2), have the ability to stimulate the GTPase activity of Ras proteins from higher animals or yeast. Previous studies indicate that certain lipids are able to inhibit this activity associated with the mammalian GAP protein. Inhibition of GAP would be expected to biologically activate Ras protein. In these studies arachidonic acid is shown also to inhibit the activity of the catalytic fragments of the other two proteins, mammalian NF1 and the yeast IRA2 proteins. In addition, phosphatidic acid (containing arachidonic and stearic acid) was inhibitory for the catalytic fragment of NF1 protein, but did not inhibit the catalytic fragments of GAP or IRA2 proteins. These observations emphasize the biochemical similarity of these proteins and provide support for the suggestion that lipids might play an important role in their biological control, and therefore also in the control of Ras activity and cellular proliferation.  相似文献   
37.
38.
Summary Uroporphyrinogen III synthase [UROS; hydroxymethylbilane hydro-lyase (cyclizing), EC 4.2.1.75] is the fourth enzyme in the human heme biosynthetic pathway. The recent isolation of the cDNA encoding human UROS facilitated its chromosomal localization. Human UROS sequences were specifically amplified by the polymerase chain reaction (PCR) from genomic DNA of two independent panels of human-rodent somatic cell hybrids. There was 100% concordance for the presence of the human UROS PCR product and human chromosome 10. For each of the other chromosomes, there was 19%–53% discordance with human UROS. The chromosomal assignment was confirmed by Southern hybridization analysis of DNA from somatic cell hybrids with the full-length UROS cDNA. Using human-rodent hybrids containing different portions of human chromosome 10, we assigned the UROS gene to the region 10q25.2 q26.3.  相似文献   
39.
hsp108,,,,,, a novel heat shock inducible protein of chicken   总被引:1,自引:0,他引:1  
D R Sargan  M J Tsai  B W O'Malley 《Biochemistry》1986,25(20):6252-6258
  相似文献   
40.
S B Chang  J O Alben  D A Wisner  M D Tsai 《Biochemistry》1986,25(11):3435-3440
Fourier-transform infrared spectroscopy (FT-IR) was used to study the structural properties of Rp, Sp, and Rp + Sp isomers of 1,2-dipalmitoyl-sn-glycero-3-thiophosphocholine (DPPsC), in comparison with those of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). For the vibrational modes of acyl chains, isomers of DPPsC show similar temperature and phase dependence to DPPC. However, the Rp isomer of DPPsC exhibits several unique properties: the CH2 symmetric stretching band is unusually weak, the CH2 asymmetric stretching band is unusually narrow, and the CH2 wagging bands do not disappear completely at temperatures above the main transition. These differences could imply a tighter packing and be responsible for the unique phase-transition property of (Rp)-DPPsC. For the vibrational modes of the thiophosphodiester group, the frequency of the P-O stretching mode of DPPsC suggests that the POS- triad exists predominantly in the mesomeric form. This is in contrast to the structure of nucleoside phosphorothioates where charge localization at sulfur has been demonstrated [Iyengar, R., Eckstein, F., & Frey, P. A. (1984) J. Am. Chem. Soc. 106, 8309-8310]. This suggests that the different biophysical properties between isomers of DPPsC are not due to different charge distribution in the POS- triad or different geometry of charge distribution on the membrane surface. Instead, factors such as size or hydration property of oxygen and sulfur, as well as the different configuration at phosphorus, could be responsible for the differences in the conformation and packing of acyl chains, as revealed by the different properties in the CH2 stretching and wagging modes of DPPsC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号