首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5376篇
  免费   452篇
  国内免费   3篇
  2024年   4篇
  2023年   36篇
  2022年   79篇
  2021年   146篇
  2020年   78篇
  2019年   113篇
  2018年   106篇
  2017年   105篇
  2016年   195篇
  2015年   311篇
  2014年   332篇
  2013年   421篇
  2012年   495篇
  2011年   493篇
  2010年   294篇
  2009年   285篇
  2008年   386篇
  2007年   351篇
  2006年   346篇
  2005年   290篇
  2004年   264篇
  2003年   230篇
  2002年   191篇
  2001年   26篇
  2000年   21篇
  1999年   37篇
  1998年   35篇
  1997年   25篇
  1996年   30篇
  1995年   12篇
  1994年   7篇
  1993年   10篇
  1992年   4篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1988年   10篇
  1987年   2篇
  1985年   3篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1973年   1篇
  1971年   1篇
  1967年   1篇
排序方式: 共有5831条查询结果,搜索用时 15 毫秒
51.
52.
The first committed step in sterol biosynthesis in plants involves the cyclization of 2,3-oxidosqualene by the oxidosqualene cyclase (OSC) enzyme cycloartenol synthase. 2,3-Oxidosqualene is also a precursor for triterpene synthesis. Antimicrobial triterpenes are common in dicots, but seldom found in monocots, with the notable exception of oat. Here, through genome mining and metabolic engineering, we investigate the potential for triterpene synthesis in rice. The first two steps in the oat triterpene pathway are catalysed by a divergent OSC (AsbAS1) and a cytochrome P450 (CYP51). The genes for these enzymes form part of a metabolic gene cluster. To investigate the origins of triterpene synthesis in monocots, we analysed systematically the OSC and CYP51 gene families in rice. We also engineered rice for elevated triterpene content. We discovered a total of 12 OSC and 12 CYP51 genes in rice and uncovered key events in the evolution of triterpene synthesis. We further showed that the expression of AsbAS1 in rice leads to the accumulation of the simple triterpene, β-amyrin. These findings provide new insights into the evolution of triterpene synthesis in monocots and open up opportunities for metabolic engineering for disease resistance in rice and other cereals.  相似文献   
53.
54.
55.
Strigolactones (SLs) are a family of terpenoid allelochemicals that were recognized as plant hormones only a decade ago. They influence a myriad of both above‐ and below‐ground developmental processes, and are an important survival strategy for plants in nutrient‐deprived soils. A rapidly emerging approach to gain knowledge on hormone signaling is the use of traceable analogs. A unique class of labeled SL analogs was constructed, in which the original tricyclic lactone moiety of natural SLs is replaced by a fluorescent cyanoisoindole ring system. Biological evaluation as parasitic seed germination stimulant and hypocotyl elongation repressor proved the potency of the cyanoisoindole strigolactone analogs (CISAs) to be comparable to the commonly accepted standard GR24. Additionally, via a SMXL6 protein degradation assay, we provided molecular evidence that the compounds elicit SL‐like responses through the natural signaling cascade. All CISAs were shown to exhibit fluorescent properties, and the high quantum yield and Stokes shift of the pyrroloindole derivative CISA‐7 also enabled in vivo visualization in plants. In contrast to the previously reported fluorescent analogs, CISA‐7 displays a large similarity in shape and structure with natural SLs, which renders the analog a promising tracer to investigate the spatiotemporal distribution of SLs in plants and fungi.  相似文献   
56.
Suspension bioreactors are an attractive alternative to static culture of human embryonic stem cells (hESCs) for the generation of clinically relevant cell numbers in a controlled system. In this study, we have developed a scalable suspension culture system using serum-free defined media with spinner flasks for hESC expansion as cell aggregates. With optimized cell seeding density and splitting interval, we demonstrate prolonged passaging and expansion of several hESC lines with overall expansion, yield, viability and maintenance of pluripotency equivalent to adherent culture. Human ESCs maintained in suspension as aggregates can be passaged at least 20 times to achieve over 1×10(13) fold calculated expansion with high undifferentiation rate and normal karyotype. Furthermore, the aggregates are able to differentiate to cardiomyocytes in a directed fashion. Finally, we show that the cells can be cryopreserved in serum-free medium and thawed into adherent or suspension cultures to continue passaging and expansion. We have successfully used this method under cGMP or cGMP-equivalent conditions to generate cell banks of several hESC lines. Taken together, our suspension culture system provides a powerful approach for scale-up expansion of hESCs under defined and serum-free conditions for clinical and research applications.  相似文献   
57.
Radiation force produced by low-amplitude ultrasound at clinically relevant frequencies remotely translates freely flowing microbubble ultrasound contrast agents over distances up to centimeters from the luminal space to the vessel wall in order to enhance ligand-receptor contact in targeting applications. The question arises as to how the microbubble shell might be designed at the molecular level to fully take advantage of such physical forces in targeted adhesion for molecular imaging and controlled therapeutic release. Herein, we report on a novel surface architecture in which the tethered ligand is buried in a polymeric overbrush. Our results, with biotin-avidin as the model ligand-receptor pair, show that the overbrush conceals the ligand, thereby reducing immune cell binding and increasing circulation persistence. Targeted adhesion is achieved through application of ultrasound radiation force to instantly reveal the ligand within a well-defined focal zone and simultaneously bind the ligand and receptor. Our data illustrate how the adhesive properties of the contrast agent surface can be reversibly changed, from stealth to sticky, through the physical effects of ultrasound. This technique can be combined with any ligand-receptor pair to optimize targeted adhesion for ultrasonic molecular imaging.  相似文献   
58.
59.
60.
Microtubules (MTs) are cytoskeletal fibers that undergo dynamic instability (DI), a remarkable process involving phases of growth and shortening separated by stochastic transitions called catastrophe and rescue. Dissecting DI mechanism(s) requires first characterizing and quantifying these dynamics, a subjective process that often ignores complexity in MT behavior. We present a Statistical Tool for Automated Dynamic Instability Analysis (STADIA) that identifies and quantifies not only growth and shortening, but also a category of intermediate behaviors that we term “stutters.” During stutters, the rate of MT length change tends to be smaller in magnitude than during typical growth or shortening phases. Quantifying stutters and other behaviors with STADIA demonstrates that stutters precede most catastrophes in our in vitro experiments and dimer-scale MT simulations, suggesting that stutters are mechanistically involved in catastrophes. Related to this idea, we show that the anticatastrophe factor CLASP2γ works by promoting the return of stuttering MTs to growth. STADIA enables more comprehensive and data-driven analysis of MT dynamics compared with previous methods. The treatment of stutters as distinct and quantifiable DI behaviors provides new opportunities for analyzing mechanisms of MT dynamics and their regulation by binding proteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号