首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4938篇
  免费   419篇
  国内免费   3篇
  5360篇
  2024年   3篇
  2023年   32篇
  2022年   77篇
  2021年   135篇
  2020年   69篇
  2019年   101篇
  2018年   92篇
  2017年   94篇
  2016年   173篇
  2015年   284篇
  2014年   307篇
  2013年   382篇
  2012年   462篇
  2011年   463篇
  2010年   274篇
  2009年   260篇
  2008年   361篇
  2007年   329篇
  2006年   318篇
  2005年   278篇
  2004年   240篇
  2003年   218篇
  2002年   182篇
  2001年   21篇
  2000年   15篇
  1999年   29篇
  1998年   33篇
  1997年   22篇
  1996年   29篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1985年   2篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有5360条查询结果,搜索用时 0 毫秒
41.
Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p < 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.  相似文献   
42.
A small combinatorial library of LDTI mutants (5.2 x 10(4)) restricted to the P1-P4' positions of the reactive site was displayed on the pCANTAB 5E phagemid, and LDTI fusion phages were produced and selected for potent neutrophil elastase and plasmin inhibitors. Strong fusion phage binders were analyzed by ELISA on enzyme-coated microtiter plates and the positive phages had their DNA sequenced. The LDTI variants: 29E (K8A, I9A, L10F, and K11F) and 19E (K8A, K11Q, and P12Y) for elastase and 2Pl (K11W and P12N), 8Pl (I9V, K11W, and P12E), and 10Pl (I9T, K11L, and P12L) for plasmin were produced with a Saccharomyces cerevisiae expression system. New strong elastase and plasmin inhibitors were 29E and 2Pl, respectively. LDTI-29E was a potent and specific neutrophil elastase inhibitor K(i) =0.5 nM), affecting no other tested enzymes. LDTI-2Pl was the strongest plasmin inhibitor ( K(i) =1.7nM) in the LDTI mutant library. This approach allowed selection of new specific serine proteinase inhibitors for neutrophil elastase and plasmin (a thrombin inhibitor variant was previously described), from a unique template molecule, LDTI, a Kazal type one domain inhibitor, by only 2-4 amino acid replacements. Our data validate this small LDTI combinatorial library as a tool to generate specific serine proteinase inhibitors suitable for drug design and enzyme-inhibitor interaction studies.  相似文献   
43.
Although the cellular immune response is essential for controlling SIV replication in Asian macaques, its role in maintaining nonpathogenic SIV infection in natural hosts such as sooty mangabeys (SM) remains to be defined. We have previously shown that similar to rhesus macaques (RM), SM are able to mount a T lymphocyte response against SIV infection. To investigate early control of SIV replication in natural hosts, we performed a detailed characterization of SIV-specific cellular immunity and viral control in the first 6 mo following SIV infection in SM. Detection of the initial SIV-specific IFN-γ ELISPOT response in SIVsmE041-infected SM coincided temporally with a decline in peak plasma viremia and was similar in magnitude, specificity, and breadth to SIVsmE041-infected and SIVmac239-infected RM. Despite these similarities, SM showed a greater reduction in postpeak plasma viremia and a more rapid disappearance of productively SIV-infected cells from the lymph node compared with SIVmac239-infected RM. The early Gag-specific CD8(+) T lymphocyte response was significantly more polyfunctional in SM compared with RM, and granzyme B-positive CD8(+) T lymphocytes were present at significantly higher frequencies in SM even prior to SIV infection. These findings suggest that the early SIV-specific T cell response may be an important determinant of lymphoid tissue viral clearance and absence of lymph node immunopathology in natural hosts of SIV infection.  相似文献   
44.
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life‐history costs of sprouting, and of dormancy. Short‐lived and mycoheterotrophic species have higher proportions of dormant plants than long‐lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.  相似文献   
45.
46.
Migratory behaviors such as the timing and duration of migration are genetically inherited and can be under strong natural selection, yet we still know very little about the specific genes or molecular pathways that control these behaviors. Studies in candidate genes Clock and Adcyap1 have revealed that both of these loci can be significantly correlated with migratory behaviors in birds, though observed relationships appear to vary across species. We investigated geographic genetic structure of Clock and Adcyap1 in four populations of blackpoll warblers (Setophaga striata), a Neotropical–Nearctic migrant that exhibits geographic variation in migratory timing and duration across its boreal breeding distribution. Further, we used data on migratory timing and duration, obtained from light‐level geolocator trackers to investigate candidate genotype–phenotype relationships at the individual level. While we found no geographic structure in either candidate gene, we did find evidence that candidate gene lengths are correlated with five of the six migratory traits. Maximum Clock allele length was significantly and negatively associated with spring arrival date. Minimum Adcyap1 allele length was significantly and negatively associated with spring departure date and positively associated with fall arrival date at the wintering grounds. Additionally, we found a significant interaction between Clock and Adcyap1 allele lengths on both spring and fall migratory duration. Adcyap1 heterozygotes also had significantly shorter migration duration in both spring and fall compared to homozygotes. Our results support the growing body of evidence that Clock and Adcyap1 allele lengths are correlated with migratory behaviors in birds.  相似文献   
47.
48.
Gating of cystic fibrosis transmembrane conductance regulator (CFTR) channels requires intermolecular or interdomain interactions, but the exact nature and physiological significance of those interactions remains uncertain. Subconductance states of the channel may result from alterations in interactions among domains, and studying mutant channels enriched for a single conductance type may elucidate those interactions. Analysis of CFTR channels in inside-out patches revealed that mutation of cysteine residues in NBD1 and NBD2 affects the frequency of channel opening to the full-size versus a 3-pS subconductance. Mutating cysteines in NBD1 resulted in channels that open almost exclusively to the 3-pS subconductance, while mutations of cysteines in NBD2 decreased the frequency of subconductance openings. Wild-type channels open to both size conductances and make fast transitions between them within a single open burst. Full-size and subconductance openings of both mutant and wild-type channels are similarly activated by ATP and phosphorylation. However, the different size conductances open very differently in the presence of a nonhydrolyzable ATP analog, with subconductance openings significantly shortened by ATPgammaS, while full-size channels are locked open. In wild-type channels, reducing conditions increase the frequency and decrease the open time of subconductance channels, while oxidizing conditions decrease the frequency of subconductance openings. In contrast, in the cysteine mutants studied, altering redox potential has little effect on gating of the subconductance.  相似文献   
49.
As is clear in the 2008 report of the President's Council on Bioethics, the brain death debate is plagued by ambiguity in the use of such key terms as ‘integration’ and ‘wholeness’. Addressing this problem, I offer a plausible ontological account of organismal unity drawing on the work of Hoffman and Rosenkrantz, and then apply that account to the case of brain death, concluding that a brain dead body lacks the unity proper to a human organism, and has therefore undergone a substantial change. I also show how my view can explain hard cases better than one in which biological integration (as understood by Alan Shewmon and the President's Council) is taken to imply ontological wholeness or unity.  相似文献   
50.
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号