首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5092篇
  免费   422篇
  国内免费   3篇
  5517篇
  2024年   3篇
  2023年   32篇
  2022年   77篇
  2021年   137篇
  2020年   72篇
  2019年   102篇
  2018年   93篇
  2017年   94篇
  2016年   175篇
  2015年   285篇
  2014年   308篇
  2013年   386篇
  2012年   475篇
  2011年   468篇
  2010年   281篇
  2009年   263篇
  2008年   366篇
  2007年   335篇
  2006年   326篇
  2005年   285篇
  2004年   246篇
  2003年   220篇
  2002年   188篇
  2001年   25篇
  2000年   18篇
  1999年   32篇
  1998年   34篇
  1997年   25篇
  1996年   31篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   12篇
  1990年   18篇
  1989年   5篇
  1988年   7篇
  1985年   3篇
  1984年   3篇
  1982年   7篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有5517条查询结果,搜索用时 0 毫秒
71.
The Saccharopolyspora erythraea mutB knockout strain, FL2281, having a block in the methylmalonyl-CoA mutase reaction, was found to carry a diethyl methylmalonate-responsive (Dmr) phenotype in an oil-based fermentation medium. The Dmr phenotype confers the ability to increase erythromycin A (erythromycin) production from 250–300% when the oil-based medium is supplemented with 15 mM levels of this solvent. Lower concentrations of the solvent stimulated proportionately less erythromycin production, while higher concentrations had no additional benefit. Although the mutB strain is phenotypically a low-level erythromycin producer, diethyl methylmalonate supplementation allowed it to produce up to 30% more erythromycin than the wild-type (control) strain—a strain that does not show the Dmr phenotype. The Dmr phenotype represents a new class of strain improvement phenotype. A theory to explain the biochemical mechanism for the Dmr phenotype is proposed. Other phenotypes found to be associated with the mutB knockout were a growth defect and hyper-pigmentation, both of which were restored to normal by exposure to diethyl methylmalonate. Furthermore, mutB fermentations did not significantly metabolize soybean oil in the presence of diethyl methylmalonate. Finally, a novel method is proposed for the isolation of additional mutants with the Dmr phenotype.  相似文献   
72.
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.  相似文献   
73.
In MDCK cells, presenilin-1 (PS1) accumulates at intercellular contacts where it colocalizes with components of the cadherin-based adherens junctions. PS1 fragments form complexes with E-cadherin, beta-catenin, and alpha-catenin, all components of adherens junctions. In confluent MDCK cells, PS1 forms complexes with cell surface E-cadherin; disruption of Ca(2+)-dependent cell-cell contacts reduces surface PS1 and the levels of PS1-E-cadherin complexes. PS1 overexpression in human kidney cells enhances cell-cell adhesion. Together, these data show that PS1 incorporates into the cadherin/catenin adhesion system and regulates cell-cell adhesion. PS1 concentrates at intercellular contacts in epithelial tissue; in brain, it forms complexes with both E- and N-cadherin and concentrates at synaptic adhesions. That PS1 is a constituent of the cadherin/catenin complex makes that complex a potential target for PS1 FAD mutations.  相似文献   
74.
Postharvest processing (PHP) is used to reduce levels of Vibrio vulnificus in oysters, but process validation is labor-intensive and expensive. Therefore, quantitative PCR was evaluated as a rapid confirmation method for most-probable-number enumeration (QPCR-MPN) of V. vulnificus bacteria in PHP oysters. QPCR-MPN showed excellent correlation (R2 = 0.97) with standard MPN and increased assay sensitivity and efficiency.  相似文献   
75.
Isosteres of cryptolepine (1) were synthesized and evaluated for their antiinfective activities. Overall, the sulfur isostere, 5-methyl benzothieno[3,2-b]quinolinium salt (5b), was equipotent to 1 and has shown no cytotoxicity at 23.8 microg/mL. Compound 5b was also found to have a broad spectrum of activity. Both the carbon and oxygen isosteres were less potent than cryptolepine. A limited library of 2-substituted analogs of 5b has been synthesized and evaluated in antifungal screens but did not show increase in potency compared to the unsubstituted 5b. Similarly, evaluation of tricyclic benzothieno[3,2-b]pyridines while showing promise in individual screens did not produce an overall increase in potency. Overall, the evaluation of the activities of 5b compared with standard antifungal/anti-protozoal agents suggests that the benzothienoquinoline scaffold could serve as a lead for optimization.  相似文献   
76.
Rhizoeconomics: Carbon costs of phosphorus acquisition   总被引:4,自引:0,他引:4  
Plants display a wide array of physiological adaptations to low soil phosphorus availability. Here we discuss metabolic and ecological costs associated with these strategies, focusing on the carbon costs of root traits related to phosphorus acquisition in crop plants. We propose that such costs are an important component of adaptation to low phosphorus soils. In common bean, genotypes with superior low phosphorus adaptation express traits that reduce the respiratory burden of root growth, including greater allocation to metabolically inexpensive root classes, such as adventitious roots, and greater formation of cortical aerenchyma, which reduces specific root respiration. Root hair formation increases phosphorus acquisition at minimal carbon cost, but may have other unknown ecological costs. Mycorrhizas and root exudates enhance phosphorus acquisition in some taxa, but at significant carbon cost. Root architectural patterns that enhance topsoil foraging enhance phosphorus acquisition but appear to incur tradeoffs for water acquisition and spatial competition. A better understanding of the metabolic and ecological costs associated with phosphorus acquisition strategies is needed for an intelligent deployment of such traits in crop improvement programs.  相似文献   
77.
The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.  相似文献   
78.
Asymmetric stem cell division has emerged as a major regulatory mechanism for physiologic control of stem cell numbers. Reinvigoration of the cancer stem cell theory suggests that tumorigenesis may be regulated by maintaining the balance between asymmetric and symmetric cell division. Therefore, mutations affecting this balance could result in aberrant expansion of stem cells. Although a number of molecules have been implicated in regulation of asymmetric stem cell division, here, we highlight known tumor suppressors with established roles in this process. While a subset of these tumor suppressors were originally defined in developmental contexts, recent investigations reveal they are also lost or mutated in human cancers. Mutations in tumor suppressors involved in asymmetric stem cell division provide mechanisms by which cancer stem cells can hyperproliferate and offer an intriguing new focus for understanding cancer biology. Our discussion of this emerging research area derives insight from a frontier area of basic science and links these discoveries to human tumorigenesis. This highlights an important new focus for understanding the mechanism underlying expansion of cancer stem cells in driving tumorigenesis.  相似文献   
79.
80.

Background

The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum.

Methodology/Principal Findings

We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF)-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85), P. falciparum (n = 30), or both species (n = 12), and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL)-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN)-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species.

Conclusions

Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction of regulatory cytokines may be a critical mechanism protecting vivax malaria patients from severe clinical complications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号