首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5072篇
  免费   418篇
  国内免费   2篇
  2023年   24篇
  2022年   62篇
  2021年   136篇
  2020年   72篇
  2019年   102篇
  2018年   93篇
  2017年   94篇
  2016年   175篇
  2015年   285篇
  2014年   308篇
  2013年   386篇
  2012年   475篇
  2011年   468篇
  2010年   281篇
  2009年   263篇
  2008年   366篇
  2007年   335篇
  2006年   326篇
  2005年   285篇
  2004年   246篇
  2003年   220篇
  2002年   188篇
  2001年   25篇
  2000年   18篇
  1999年   32篇
  1998年   34篇
  1997年   25篇
  1996年   31篇
  1995年   12篇
  1994年   6篇
  1993年   10篇
  1992年   7篇
  1991年   12篇
  1990年   18篇
  1989年   5篇
  1988年   7篇
  1985年   3篇
  1984年   3篇
  1982年   7篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1968年   3篇
  1967年   3篇
  1966年   2篇
排序方式: 共有5492条查询结果,搜索用时 15 毫秒
181.
The unfolded protein response (UPR) contributes to chlamydial pathogenesis, as a source of lipids and ATP during replication, and for establishing the initial anti-apoptotic state of host cell that ensures successful inclusion development. The molecular mechanism(s) of UPR induction by Chlamydia is unknown. Chlamydia use type III secretion system (T3SS) effector proteins (e.g, the Translocated Actin-Recruiting Phosphoprotein (Tarp) to stimulate host cell's cytoskeletal reorganization that facilitates invasion and inclusion development. We investigated the hypothesis that T3SS effector-mediated assembly of myosin-II complex produces activated non-muscle myosin heavy chain II (NMMHC-II), which then binds the UPR master regulator (BiP) and/or transducers to induce UPR. Our results revealed the interaction of the chlamydial effector proteins (CT228 and Tarp) with components of the myosin II complex and UPR regulator and transducer during infection. These interactions caused the activation and binding of NMMHC-II to BiP and IRE1α leading to UPR induction. In addition, specific inhibitors of myosin light chain kinase, Tarp oligomerization and myosin ATPase significantly reduced UPR activation and Chlamydia replication. Thus, Chlamydia induce UPR through T3SS effector-mediated activation of NMMHC-II components of the myosin complex to facilitate infectivity. The finding provides greater insights into chlamydial pathogenesis with the potential to identify therapeutic targets and formulations.  相似文献   
182.
183.
184.
Insulin resistance leads to myocardial contractile dysfunction and deranged autophagy although the underlying mechanism or targeted therapeutic strategy is still lacking. This study was designed to examine the impact of inhibition of the cytochrome P450 2E1 (CYP2E1) enzyme on myocardial function and mitochondrial autophagy (mitophagy) in an Akt2 knockout model of insulin resistance. Adult wild-type (WT) and Akt2?/? mice were treated with the CYP2E1 inhibitor diallyl sulfide (100?mg/kg/d, i.p.) for 4?weeks. Cardiac geometry and function were assessed using echocardiographic and IonOptix systems. Western blot analysis was used to evaluate autophagy, mitophagy, inducible NOS (iNOS), and the NLRP3 inflammasome, a multi-protein intracellular pattern recognition receptor complex. Akt2 deletion triggered insulin resistance, compromised cardiac contractile and intracellular Ca2+ property, mitochondrial ultrastructural damage, elevated O2 production, as well as suppressed autophagy and mitophagy, accompanied with elevated levels of NLRP3 and iNOS, the effects of which were significantly attenuated or ablated by diallyl sulfide. In vitro studies revealed that the NLRP3 activator nigericin nullified diallyl sulfide-offered benefit against Akt2 knockout on cardiomyocyte mechanical function and mitophagy (using Western blot and colocalization of GFP-LC3 and MitoTracker Red). Moreover, inhibition of iNOS but not mitochondrial ROS production attenuated Akt2 deletion-induced activation of NLRP3, substantiating a role for iNOS-mediated NLRP3 in insulin resistance-induced changes in mitophagy and cardiac dysfunction. In conclusion, these data depict that insulin resistance through CYP2E1 may contribute to the pathogenesis of myopathic changes including myocardial contractile dysfunction, oxidative stress and mitochondrial injury, possibly through activation of iNOS and NLRP3 signaling.  相似文献   
185.
Captive breeding efforts of the threatened maned wolf (Chrysocyon brachyurus) have been plagued by a lack of reliable reproduction and a high rate of neonatal mortality. A particular problem for animal managers has been the ability to detect pregnancy in a noninvasive manner. Pseudopregnancies are common, and many staff hours are expended preparing for a birth that may not occur. The objectives of our study were to document changes in behavior during the breeding season in captive maned wolves in order to determine if behaviors other than sexual (i.e., copulation) could be used to distinguish nonbreeding from breeding pairs and, further, whether successful breeding pairs (young born) could be distinguished behaviorally from breeding pairs that did not produce young (pseudopregnant). Between 1988 and 1994, behavioral data were collected during the annual reproductive season from 52 maned wolf pairings (27 males, 26 females) housed at 17 North American institutions. Breeding animals showed significant increases in rates of affiliative behaviors (approach, friendly) and the amount of time spent in close association (social) during the estrous period, compared to pre- and post-estrous periods. In contrast, the behavior of nonbreeding pairs varied little throughout the breeding season. Discriminant function analysis (DFA) showed that several behavioral measurements during certain reproductive periods were useful in discriminating between nonbreeding and breeding animals (rates of friendly and social behavior for males, marking and social behavior for females). Unsuccessful (pseudopregnant) and successful breeding pairs could be further distinguished on the basis of agonistic and approach behavior frequencies (successful females showed higher rates of agonistic and lower rates of approach behavior during certain periods; successful males had higher rates of both behaviors). Discriminant equations for key behavioral measurements and examples of their practical application are presented. DFA provides animal managers with an effective, noninvasive technique for assessing the reproductive status of maned wolf pairs. © 1996 Wiley-Liss, Inc.  相似文献   
186.
  1. Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.
  2. We apply a framework for using K‐means clustering to classify bird behavior using points from short time interval GPS tracks. K‐means clustering is a well‐known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply K‐means clustering to six focal variables derived from GPS data collected at 1–11 s intervals from free‐flying bald eagles (Haliaeetus leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life‐stage‐ and age‐related variation in behavior.
  3. After filtering for data quality, the K‐means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non‐moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.
  4. The K‐means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short‐interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high‐dimensional movement data, it provides insight into small‐scale variation in behavior that would not be possible with many other analytical approaches.
  相似文献   
187.
188.
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.  相似文献   
189.
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号