首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5273篇
  免费   453篇
  国内免费   3篇
  5729篇
  2024年   3篇
  2023年   32篇
  2022年   78篇
  2021年   137篇
  2020年   70篇
  2019年   105篇
  2018年   95篇
  2017年   94篇
  2016年   176篇
  2015年   293篇
  2014年   318篇
  2013年   408篇
  2012年   488篇
  2011年   485篇
  2010年   294篇
  2009年   264篇
  2008年   381篇
  2007年   340篇
  2006年   333篇
  2005年   293篇
  2004年   262篇
  2003年   231篇
  2002年   196篇
  2001年   31篇
  2000年   22篇
  1999年   34篇
  1998年   36篇
  1997年   26篇
  1996年   32篇
  1995年   13篇
  1994年   11篇
  1993年   12篇
  1992年   11篇
  1991年   17篇
  1990年   19篇
  1989年   12篇
  1988年   11篇
  1987年   5篇
  1986年   3篇
  1984年   3篇
  1983年   4篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   4篇
  1975年   3篇
  1974年   4篇
  1973年   4篇
  1971年   3篇
  1966年   2篇
排序方式: 共有5729条查询结果,搜索用时 26 毫秒
31.
Exposure of platelets to toxins (calyculin A or okadaic acid) that inhibit protein serine/threonine phosphatases types 1 and 2A, at concentrations that block aggregatory and secretory responses, results in the phosphorylation of several platelet proteins including integrin beta(3). Since protein phosphorylation represents a balance between kinase and phosphatase activities, this increase in phosphorylation reflects either the removal of phosphatases that oppose constitutively active kinases known to reside in the platelet (e.g., casein kinase 2) or the activation of endogenous kinases. In this study, we demonstrate that the addition of calyculin A promotes the activation of several endogenous platelet protein kinases, including p42/44(mapk), p38(mapk), Akt/PKB, and LKB1. Using a pharmacologic approach, we assessed whether inhibition of these and other enzymes block phosphorylation of beta(3). Inhibitors of p38(mapk), casein kinase, AMP kinase, protein kinase C, and calcium-calmodulin-dependent kinases did not block phosphorylation of beta(3) on thr(753). In contrast, 5'-iodotubercidin, at 50 muM, blocks beta(3) phosphorylation without affecting the efficacy of calyculin A to inhibit platelet aggregation and spreading. These data dissociate threonine phosphorylation of beta(3) molecules and inhibition of platelet responses by protein phosphatase inhibitors.  相似文献   
32.
33.
We found that the proteome of apoptotic T cells includes prominent fragments of cellular proteins generated by caspases and that a high proportion of distinct T cell epitopes in these fragments is recognized by CD8+ T cells during HIV infection. The frequencies of effector CD8+ T cells that are specific for apoptosis-dependent epitopes correlate with the frequency of circulating apoptotic CD4+ T cells in HIV-1-infected individuals. We propose that these self-reactive effector CD8+ T cells may contribute to the systemic immune activation during chronic HIV infection. The caspase-dependent cleavage of proteins associated with apoptotic cells has a key role in the induction of self-reactive CD8+ T cell responses, as the caspase-cleaved fragments are efficiently targeted to the processing machinery and are cross-presented by dendritic cells. These findings demonstrate a previously undescribed role for caspases in immunopathology.  相似文献   
34.
Rho GTPases are critical components of cellular signal transduction pathways. Both hyperactivity and overexpression of these proteins have been observed in human cancers and have been implicated as important factors in metastasis. We previously showed that dietary n-6 fatty acids increase cancer cell adhesion to extracellular matrix proteins, such as type IV collagen. Here we report that in MDA-MB-435 human melanoma cells, arachidonic acid activates RhoA, and inhibition of RhoA signaling with either C3 exoenzyme or dominant negative Rho blocked arachidonic acid-induced cell adhesion. Inhibition of the Rho kinase (ROCK) with either small molecule inhibitors or ROCK II-specific small interfering RNA (siRNA) blocked the fatty acid-induced adhesion. However, unlike other systems, inhibition of ROCK did not block the activation of p38 mitogen-activated protein kinase (MAPK); instead, Rho activation depended on p38 MAPK activity and the presence of heat shock protein 27 (HSP27), which is phosphorylated downstream of p38 after arachidonic acid treatment. HSP27 associated with p115RhoGEF in fatty acid-treated cells, and this association was blocked when p38 was inhibited. Furthermore, siRNA knockdown of HSP27 blocked the fatty acid-stimulated Rho activity. Expression of dominant negative p115-RhoGEF or p115RhoGEF-specific siRNA inhibited both RhoA activation and adhesion on type IV collagen, whereas a constitutively active p115RhoGEF restored the arachidonic acid stimulation in cells in which the p38 MAPK had been inhibited. These data suggest that n-6 dietary fatty acids stimulate a set of interactions that regulates cell adhesion through RhoA and ROCK II via a p38 MAPK-dependent association of HSP27 and p115RhoGEF.The ability of tumor cells to metastasize to secondary sites is a hallmark of neoplastic disease. Unfortunately, this propensity to spread is the primary cause of morbidity and death in cancer patients (1). Metastasis is clearly a highly regulated, multistep process that occurs in a spatiotemporal manner (24). To escape the restrictive compartment boundaries characteristic of adult tissue, separate intravasation and extravasation steps requiring alterations in co-adhesion, adhesion, invasion, and migration must occur. Execution of these biological processes, involving multiple proteins and cellular organelles, require highly coordinated cell signaling mechanisms.The Rho family of small GTPases regulates many facets of cytoskeletal rearrangements that facilitate cell attachment and migration (57). Rho GTPases act as molecular switches by changing from an inactive GDP-bound conformation to an active GTP-bound conformation, thereby regulating a signaling pathway. These proteins are directly regulated by Rho guanine nucleotide exchange factors (GEFs),2 Rho GTPase activating proteins, and Rho GDP-dissociation inhibitors (812). RhoGEFs bind to the GTPase to catalyze the dissociation of GDP, allowing the binding of GTP and thereby promoting Rho activation (8). The RGS (regulators of G protein signaling) domain-containing RhoGEFs are a recently described family of GEFs. Currently, there are three members of this family, PDZ-RhoGEF, LARG, and p115RhoGEF (1315), in which the RGS domains function as a heterotrimeric GTPase-activating domain (13, 15, 16). The RGS family of RhoGEFs has been shown to regulate Rho during several processes including cytoskeletal rearrangements, cell adhesion, and cancer progression (1721).There is significant interplay between the activity of small GTPases and signaling derived from fatty acid metabolism (2228). Linoleic acid, which is metabolized to arachidonic acid, is an n-6 polyunsaturated fatty acid that is present at high levels in most western diets (29). In animal models, diets high in n-6 polyunsaturated fatty acids have been shown to enhance tumor progression and metastasis (30, 31). Additionally, arachidonic acid is stored in cell membranes and is made available by phospholipases under conditions of increased inflammatory response (32). Arachidonic acid is further metabolized by cyclooxygenases (COX), lipoxygenases (LOX), and cytochrome P450 monooxygenases to yield bioactive products that have myriad effects on cells, and altered metabolism of arachidonic acid by COX, LOX, and P450 has been implicated in cancer progression (31, 3336).We have studied mechanisms of cell adhesion using the MDA-MB-435 cells as a model of a highly metastatic human cancer cell line (37). These cells have been extensively studied for their ability to recapitulate the metastatic cascade in vivo and in vitro, although recent work indicates that the cells currently in use are most likely a human melanoma line (38). We initially observed that arachidonic acid (AA) enhanced adhesion of MDA-MB-435 cells to type IV collagen through specific integrin-mediated pathways (37). Exogenous AA led to the activation of mitogen-activated protein kinase (MAPK)-activated protein kinase 2 and the phosphorylation of heat shock protein 27 (HSP27) via a p38 MAPK-dependent process (39). Inhibition of p38 MAPK activation blocked cell adhesion as did function-blocking antibodies specific for subunits of the collagen receptor (40). More recently, we identified the key metabolite of AA (15-(S)- hydroxyeicosatetraenoic acid) and the upstream kinases (TAK1 and MKK6) that are responsible for activation of p38 MAPK in this system (41).In this study we investigated the role of Rho activation in the MDA-MB-435 cells after exposure to arachidonic acid. Several aspects of the regulation of Rho signaling in these cells provide insights into the cross-talk between important signaling pathways.  相似文献   
35.
The Saccharopolyspora erythraea mutB knockout strain, FL2281, having a block in the methylmalonyl-CoA mutase reaction, was found to carry a diethyl methylmalonate-responsive (Dmr) phenotype in an oil-based fermentation medium. The Dmr phenotype confers the ability to increase erythromycin A (erythromycin) production from 250–300% when the oil-based medium is supplemented with 15 mM levels of this solvent. Lower concentrations of the solvent stimulated proportionately less erythromycin production, while higher concentrations had no additional benefit. Although the mutB strain is phenotypically a low-level erythromycin producer, diethyl methylmalonate supplementation allowed it to produce up to 30% more erythromycin than the wild-type (control) strain—a strain that does not show the Dmr phenotype. The Dmr phenotype represents a new class of strain improvement phenotype. A theory to explain the biochemical mechanism for the Dmr phenotype is proposed. Other phenotypes found to be associated with the mutB knockout were a growth defect and hyper-pigmentation, both of which were restored to normal by exposure to diethyl methylmalonate. Furthermore, mutB fermentations did not significantly metabolize soybean oil in the presence of diethyl methylmalonate. Finally, a novel method is proposed for the isolation of additional mutants with the Dmr phenotype.  相似文献   
36.
The spirochete periplasmic flagellum has many unique attributes. One unusual characteristic is the flagellar hook. This structure serves as a universal joint coupling rotation of the membrane-bound motor to the flagellar filament. The hook is comprised of about 120 FlgE monomers, and in most bacteria these structures readily dissociate to monomers (∼ 50 kDa) when treated with heat and detergent. However, in spirochetes the FlgE monomers form a large mass of over 250 kDa [referred to as a high molecular weight complex (HMWC)] that is stable to these and other denaturing conditions. In this communication, we examined specific aspects with respect to the formation and structure of this complex. We found that the Lyme disease spirochete Borrelia burgdorferi synthesized the HMWC throughout the in vitro growth cycle, and also in vivo when implanted in dialysis membrane chambers in rats. The HMWC was stable to formic acid, which supports the concept that the stability of the HMWC is dependent on covalent cross-linking of individual FlgE subunits. Mass spectrometry analysis of the HMWC from both wild type periplasmic flagella and polyhooks from a newly constructed ΔfliK mutant indicated that other proteins besides FlgE were not covalently joined to the complex, and that FlgE was the sole component of the complex. In addition, mass spectrometry analysis also indicated that the HMWC was composed of a polymer of the FlgE protein with both the N- and C-terminal regions remaining intact. These initial studies set the stage for a detailed characterization of the HMWC. Covalent cross-linking of FlgE with the accompanying formation of the HMWC we propose strengthens the hook structure for optimal spirochete motility.  相似文献   
37.
Many patients with pancreatic cancer have metastases to distant organs at the time of initial presentation. Recent studies examining the evolution of pancreatic cancer at the genetic level have shown that clonal complexity of metastatic pancreatic cancer is already initiated within primary tumors, and organ-specific metastases are derived from different subclones. However, we do not yet understand to what extent the evolution of pancreatic cancer contributes to proteomic and signaling alterations. We hypothesized that genetic heterogeneity of metastatic pancreatic cancer results in heterogeneity at the proteome level. To address this, we employed a model system in which cells isolated from three sites of metastasis (liver, lung, and peritoneum) from a single patient were compared. We used a SILAC-based accurate quantitative proteomic strategy combined with high-resolution mass spectrometry to analyze the total proteome and tyrosine phosphoproteome of each of the distal metastases. Our data revealed distinct patterns of both overall proteome expression and tyrosine kinase activities across the three different metastatic lesions. This heterogeneity was significant because it led to differential sensitivity of the neoplastic cells to small molecule inhibitors targeting various kinases and other pathways. For example, R428, a tyrosine kinase inhibitor that targets Axl receptor tyrosine kinase, was able to inhibit cells derived from lung and liver metastases much more effectively than cells from the peritoneal metastasis. Finally, we confirmed that administration of R428 in mice bearing xenografts of cells derived from the three different metastatic sites significantly diminished tumors formed from liver- and lung-metastasis-derived cell lines as compared with tumors derived from the peritoneal metastasis cell line. Overall, our data provide proof-of-principle support that personalized therapy of multiple organ metastases in a single patient should involve the administration of a combination of agents, with each agent targeted to the features of different subclones.Approximately half of the patients with pancreatic cancer are initially diagnosed with metastases to distal sites, with the commonest sites being the liver, lung, and peritoneum (1). Therapeutic strategies against metastases could help reduce the high mortality rates associated with this cancer (2). Understanding the nature of metastatic pancreatic cancer at a systems level can enable the discovery of potential targets for the development of targeted therapies.Pancreatic cancer has been shown to be a genetically evolving and heterogeneous disease (35). Clonal diversity and evolution of cancer genomes have also been demonstrated based on the isolation of distinct clonal populations purified directly from patient biopsies by means of flow cytometry followed by genomic characterization (6). A number of reports have documented the adoption of a proteomic approach for the discovery of potential biomarkers in pancreatic cancer (7, 8). However, these studies generally assume pancreatic cancers to be homogeneous, and the emphasis is placed on identifying molecules that are common across a broad array of tumors. There is a lack of studies systematically examining the proteomic changes or signaling pathways across pancreatic cancers to dissect the nature of the heterogeneity of each clone. An excellent setting in which the heterogeneity of tumors can be studied systematically is in a patient harboring metastases to several distant sites. To this end, we chose cells isolated from three metastatic pancreatic lesions of a single patient. The exomes of each tumor site were previously sequenced to study the progression of pancreatic cancer, and the results showed that all cell lines were identical for the genetic status of driver mutations (e.g. KRAS, TP53, and SMAD4) (9). Our hypothesis was that a better understanding of the proteomic consequences of the heterogeneity derived from genetic changes, and possibly other types of alterations, might provide additional opportunities to identify therapeutic targets.In order to precisely quantify differences across the proteomes of multiple metastatic pancreatic cancer lesions, we employed a SILAC-based1 quantitative proteomics strategy combined with high-resolution mass spectrometry (10, 11). Based on changes observed at the whole-proteome level, we found that a class of cell surface receptors showed significant enrichment with the highest alteration of their expression among the three metastatic pancreatic cancer cell lines examined (i.e. peritoneum, lung, and liver). Because the total protein levels provide information about the static levels of proteins and not their activity per se, we decided to examine the activation of phosphorylation-driven pathways, many of which are activated by cell surface receptors. To globally examine tyrosine phosphorylation-based signaling pathways, we carried out mass spectrometric analysis of purified tyrosine phosphorylated peptides enriched using anti-phosphotyrosine antibodies. As a result, we observed differential activation of tyrosine kinases in the three different sites of metastases. For example, Axl receptor tyrosine kinase was found to be hyperphosphorylated in lung and liver metastases relative to peritoneal metastasis. Expression of Axl receptor tyrosine kinase in primary and matched pancreatic cancers on tissue microarrays was validated by immunohistochemistry. Given such unique patterns of activation of pathways, it was possible that tumors derived from different sites could show differences in their sensitivity to pathway inhibitors. To test this, we performed experiments in which we screened cell lines derived from each metastatic site against a panel of small molecule inhibitors. We observed that the three metastatic pancreatic cancers had differential sensitivities to different inhibitors. For example, cells derived from the peritoneal metastasis were highly sensitive to lapatinib, whereas greater sensitivity to the Axl inhibitor R428 was observed in the lung metastasis cell line. Finally, we showed that treatment of mice bearing xenografts from these different pancreatic cancer cell lines with R428, an inhibitor of Axl receptor tyrosine kinase, led to reduction of tumors with evidence of activation of Axl.  相似文献   
38.
39.
The intramural the National Cancer Institute (NCI) and more recently the University of Texas Southwestern Medical Center with many different collaborators comprised a complex, multi-disciplinary team that collaborated to generated large, comprehensively annotated, cell-line related research resources which includes associated clinical, and molecular characterization data. This material has been shared in an anonymized fashion to accelerate progress in overcoming lung cancer, the leading cause of cancer death across the world. However, this cell line collection also includes a range of other cancers derived from patient-donated specimens that have been remarkably valuable for other types of cancer and disease research. A comprehensive analysis conducted by the NCI Center for Research Strategy of the 278 cell lines reported in the original Journal of Cellular Biochemistry Supplement, documents that these cell lines and related products have since been used in more than 14 000 grants, and 33 207 published scientific reports. This has resulted in over 1.2 million citations using at least one cell line. Many publications involve the use of more than one cell line, to understand the value of the resource collectively rather than individually; this method has resulted in 2.9 million citations. In addition, these cell lines have been linked to 422 clinical trials and cited by 4700 patents through publications. For lung cancer alone, the cell lines have been used in the research cited in the development of over 70 National Comprehensive Cancer Network clinical guidelines. Finally, it must be underscored again, that patient altruism enabled the availability of this invaluable research resource.  相似文献   
40.
Metastasis and disease relapse are hypothesized to result from tumor initiating cells (TICs). Previously, we have defined a CD44+/CD24-/low mammosphere-forming tumorigenic 493-gene signature in breast cancer. Stat3 was identified as a critical node in self-renewal based on an ongoing lentiviral shRNA screen being conducted in two breast cancer cell lines SUM159 and BT549. In corroborating work, targeting the SH2 domain of Stat3 with a novel small molecule decreased the percentage of cells expressing TIC markers (CD44+/CD24-/low and ALDH+) and mammosphere formation in p-Stat3 overexpressing human breast cancer xenografts in SCID-beige mice. Importantly, we observed a four-fold improvement in the 30-day recurrence-free survival relative to docetaxel alone with the addition of the Stat3 inhibitor in the chemoresistant tumor model. Thus, these findings provide a strong impetus for the development of selective Stat3 inhibitors in order to improve survival in patients with p-Stat3 overexpressing tumors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号