首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4947篇
  免费   420篇
  国内免费   3篇
  5370篇
  2024年   3篇
  2023年   32篇
  2022年   77篇
  2021年   135篇
  2020年   69篇
  2019年   101篇
  2018年   93篇
  2017年   94篇
  2016年   174篇
  2015年   284篇
  2014年   307篇
  2013年   383篇
  2012年   464篇
  2011年   463篇
  2010年   274篇
  2009年   260篇
  2008年   361篇
  2007年   329篇
  2006年   319篇
  2005年   279篇
  2004年   241篇
  2003年   219篇
  2002年   183篇
  2001年   21篇
  2000年   15篇
  1999年   29篇
  1998年   33篇
  1997年   22篇
  1996年   29篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1985年   2篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有5370条查询结果,搜索用时 0 毫秒
141.
Caveolin proteins drive formation of caveolae, specialized cell-surface microdomains that influence cell signaling. Signaling proteins are proposed to use conserved caveolin-binding motifs (CBMs) to associate with caveolae via the caveolin scaffolding domain (CSD). However, structural and bioinformatic analyses argue against such direct physical interactions: in the majority of signaling proteins, the CBM is buried and inaccessible. Putative CBMs do not form a common structure for caveolin recognition, are not enriched among caveolin-binding proteins, and are even more common in yeast, which lack caveolae. We propose that CBM/CSD-dependent interactions are unlikely to mediate caveolar signaling, and the basis for signaling effects should therefore be reassessed.  相似文献   
142.
Asymmetric cell divisions are a fundamental feature of neural development, and misregulation can lead to brain abnormalities or tumor formation. During an asymmetric cell division, molecular determinants are segregated preferentially into one daughter cell to specify its fate. An important goal is to identify the asymmetric determinants in neural progenitor cells, which could be tumor suppressors or inducers of specific neural fates. Here, we show that the double-stranded RNA-binding protein Stau2 is distributed asymmetrically during progenitor divisions in the developing mouse cortex, preferentially segregating into the Tbr2(+) neuroblast daughter, taking with it a subset of RNAs. Knockdown of Stau2 stimulates differentiation and overexpression produces periventricular neuronal masses, demonstrating its functional importance for normal cortical development. We immunoprecipitated Stau2 to examine its cargo mRNAs, and found enrichment for known asymmetric and basal cell determinants, such as Trim32, and identified candidates, including a subset involved in primary cilium function.  相似文献   
143.
144.
Anchored hybrid enrichment (AHE) has emerged as a powerful tool for uncovering the evolutionary relationships within many taxonomic groups. AHE probe sets have been developed for a variety of insect groups, though none have yet been shown to be capable of simultaneously resolving deep and very shallow (e.g., intraspecific) divergences. In this study, we present NOC1, a new AHE probe set (730 loci) for Lepidoptera specialized for tiger moths and assess its ability to deliver phylogenetic utility at all taxonomic levels. We test the NOC1 probe set with 142 individuals from 116 species sampled from all the major lineages of Arctiinae (Erebidae), one of the most diverse groups of noctuoids (>11 000 species) for which no well-resolved, strongly supported phylogenetic hypothesis exists. Compared to previous methods, we generally recover much higher branch support (BS), resulting in the most well-supported, well-resolved phylogeny of Arctiinae to date. At the most shallow-levels, NOC1 confidently resolves species-level and intraspecific relationships and potentially uncovers cryptic species diversity within the genus Hypoprepia. We also implement a ‘sensitivity analysis’ to explore different loci combinations and site sampling strategies to determine whether a reduced probe set can yield results similar to those of the full probe set. At both deep and shallow levels, only 50–175 of the 730 loci included in the complete NOC1 probe set were necessary to resolve most relationships with high confidence, though only when the more rapidly evolving sites within each locus are included. This demonstrates that AHE probe sets can be tailored to target fewer loci without a significant reduction in BS, allowing future studies to incorporate more taxa at a lower per-sample sequencing cost. NOC1 shows great promise for resolving long-standing taxonomic issues and evolutionary questions within arctiine lineages, one of the most speciose clades within Lepidoptera.  相似文献   
145.
Methanogenesis in cold marine sediments is a globally important process leading to methane hydrate deposits, cold seeps, physical instability of sediment, and atmospheric methane emissions. We employed a multidisciplinary approach that combined culture-dependent and -independent analyses with geochemical measurements in the sediments of Skan Bay, Alaska (53 degrees N, 167 degrees W), to investigate methanogenesis there. Cultivation-independent analyses of the archaeal community revealed that uncultivated microbes of the kingdoms Euryarchaeota and Crenarchaeota are present at Skan Bay and that methanogens constituted a small proportion of the archaeal community. Methanogens were cultivated from depths of 0 to 60 cm in the sediments, and several strains related to the orders Methanomicrobiales and Methanosarcinales were isolated. Isolates were psychrotolerant marine-adapted strains and included an aceticlastic methanogen, strain AK-6, as well as three strains of CO(2)-reducing methanogens: AK-3, AK7, and AK-8. The phylogenetic positions and physiological characteristics of these strains are described. We propose a new species, Methanogenium boonei, with strain AK-7 as the type strain.  相似文献   
146.
Aging is associated with reduced IL-2 production and T cell proliferation. Vitamin E supplementation, in aged animals and humans, increases cell division and IL-2 production by naive T cells. The immune synapse forms at the site of contact between a T cell and an APC and participates in T cell activation. We evaluated whether vitamin E affects the redistribution of signaling proteins to the immune synapse. Purified CD4(+) T cells, from the spleens of young and old mice, were treated with vitamin E before stimulation with a surrogate APC expressing anti-CD3. Using confocal fluorescent microscopy, we observed that CD4(+) T cells from old mice were significantly less likely to recruit signaling proteins to the immune synapse than cells from young mice. Vitamin E increased the percentage of old CD4(+) T cells capable of forming an effective immune synapse. Similar results were found following in vivo supplementation with vitamin E. When compared with memory cells, naive T cells from aged mice were more defective in immune synapse formation and were more responsive to vitamin E supplementation. These data show, for the first time, that vitamin E significantly improves age-related early T cell signaling events in naive CD4(+) T cells.  相似文献   
147.
For reasons that are not yet clear, male aggression against females occurs frequently among primates with promiscuous mating systems. Here, we test the sexual coercion hypothesis that male aggression functions to constrain female mate choice. We use 10 years of behavioural and endocrine data from a community of wild chimpanzees (Pan troglodytes schweinfurthii) to show that sexual coercion is the probable primary function of male aggression against females. Specifically, we show that male aggression is targeted towards the most fecund females, is associated with high male mating success and is costly for the victims. Such aggression can be viewed as a counter-strategy to female attempts at paternity confusion, and a cost of multi-male mating.  相似文献   
148.
Cachexia is common in chronic inflammatory diseases and is attributed, in part, to an elevation of circulating proinflammatory cytokines. TNF-alpha is the prototype in this category. IFN-gamma is also thought to play a role, but the evidence supporting this model is primarily indirect. To determine the direct effects of IFN-gamma stimulation on muscle cells, we selected key components of the procatabolic signaling pathways by which TNF-alpha stimulates protein loss. We tested two hypotheses: 1) IFN-gamma mimics TNF-alpha signaling by increasing intracellular oxidant activity and activating MAPKs and NF-kappaB and 2) IFN-gamma increases the expression of the ubiquitin ligases atrogin1/MAFbx and muscle-specific ring finger protein 1 (MuRF1). Results showed that treatment with IFN-gamma at 60 ng/ml increased Stat1 phosphorylation after 15 min, indicating receptor activation. IFN-gamma had no effect on cytosolic oxidant activity, as measured by 2',7'-dichlorofluorescein oxidation. Nor did IFN-gamma activate JNK, ERK1/2, or p38 MAPK, as assessed by Western blot. Treatment for up to 60 min did not decrease IkappaB-alpha protein levels, as measured by Western blot analysis, or the DNA binding activity of NF-kappaB, as measured by EMSA. After 6 h, IFN-gamma decreased Akt phosphorylation and increased atrogin1/MAFbx and MuRF1 mRNA. Daily treatment for up to 72 h did not alter adult fast-type myosin heavy chain content or the total protein-to-DNA ratio. These data show that responses of myotubes to IFN-gamma and TNF-alpha differ markedly and provide little evidence for a direct catabolic effect of IFN-gamma on muscle.  相似文献   
149.
The role of the checkpoint kinase 2 (Chk2) as an upstream activator of p53 following DNA damage has been controversial. We have recently shown that Chk2 and the DNA-dependent protein kinase (DNA-PK) are both involved in DNA damage-induced apoptosis but not G(1) arrest in mouse embryo fibroblasts. Here we demonstrate that Chk2 is required to activate p53 in vitro as measured by its ability to bind its consensus DNA target sequence following DNA damage and is in fact the previously unidentified factor working synergistically with DNA-PK to activate p53. The gene mutated in ataxia telangiectasia is not involved in this p53 activation. Using wortmannin, serine 15 mutants of p53, DNA-PK null cells and Chk2 null cells, we demonstrate that DNA-PK and Chk2 act independently and sequentially on p53. Furthermore, the p53 target of these two kinases represents a latent (preexisting) population of p53. Taken together, the results from these studies are consistent with a model in which DNA damage causes an immediate and sequential modification of latent p53 by DNA-PK and Chk2, which under appropriate conditions can lead to apoptosis.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号