首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4941篇
  免费   420篇
  国内免费   3篇
  5364篇
  2024年   3篇
  2023年   32篇
  2022年   77篇
  2021年   135篇
  2020年   69篇
  2019年   101篇
  2018年   92篇
  2017年   94篇
  2016年   173篇
  2015年   284篇
  2014年   307篇
  2013年   382篇
  2012年   462篇
  2011年   463篇
  2010年   274篇
  2009年   260篇
  2008年   361篇
  2007年   329篇
  2006年   318篇
  2005年   278篇
  2004年   240篇
  2003年   218篇
  2002年   182篇
  2001年   22篇
  2000年   15篇
  1999年   29篇
  1998年   33篇
  1997年   22篇
  1996年   29篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   11篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1985年   3篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有5364条查询结果,搜索用时 16 毫秒
191.
The risk of disease transmission from waterborne protozoa is often dependent on the origin (e.g., domestic animals versus wildlife), overall parasite load in contaminated waterways, and parasite genotype, with infections being linked to runoff or direct deposition of domestic animal and wildlife feces. Fecal samples collected from domestic animals and wildlife along the central California coast were screened to (i) compare the prevalence and associated risk factors for fecal shedding of Cryptosporidium and Giardia species parasites, (ii) evaluate the relative importance of animal host groups that contribute to pathogen loading in coastal ecosystems, and (iii) characterize zoonotic and host-specific genotypes. Overall, 6% of fecal samples tested during 2007 to 2010 were positive for Cryptosporidium oocysts and 15% were positive for Giardia cysts. Animal host group and age class were significantly associated with detection of Cryptosporidium and Giardia parasites in animal feces. Fecal loading analysis revealed that infected beef cattle potentially contribute the greatest parasite load relative to other host groups, followed by wild canids. Beef cattle, however, shed host-specific, minimally zoonotic Cryptosporidium and Giardia duodenalis genotypes, whereas wild canids shed potentially zoonotic genotypes, including G. duodenalis assemblages A and B. Given that the parasite genotypes detected in cattle were not zoonotic, the public health risk posed by protozoan parasite shedding in cattle feces may be lower than that posed by other animals, such as wild canids, that routinely shed zoonotic genotypes.  相似文献   
192.
How subunit dosage contributes to the assembly and function of multimeric complexes is an important question with implications in understanding biochemical, evolutionary, and disease mechanisms. Toward identifying pathways that are susceptible to decreased gene dosage, we performed a genome-wide screen for haploinsufficient (HI) genes that guard against genome instability in Saccharomyces cerevisiae. This led to the identification of all three genes (SPC97, SPC98, and TUB4) encoding the evolutionarily conserved γ-tubulin small complex (γ-TuSC), which nucleates microtubule assembly. We found that hemizygous γ-TuSC mutants exhibit higher rates of chromosome loss and increases in anaphase spindle length and elongation velocities. Fluorescence microscopy, fluorescence recovery after photobleaching, electron tomography, and model convolution simulation of spc98/+ mutants revealed improper regulation of interpolar (iMT) and kinetochore (kMT) microtubules in anaphase. The underlying cause is likely due to reduced levels of Tub4, as overexpression of TUB4 suppressed the spindle and chromosome segregation defects in spc98/+ mutants. We propose that γ-TuSC is crucial for balanced assembly between iMTs and kMTs for spindle organization and accurate chromosome segregation. Taken together, the results show how gene dosage studies provide critical insights into the assembly and function of multisubunit complexes that may not be revealed by using traditional studies with haploid gene deletion or conditional alleles.  相似文献   
193.
BackgroundCrimean-Congo Haemorrhagic Fever (CCHF) is a tick-borne viral zoonotic disease distributed across several continents and recognized as an ongoing health threat. In humans, the infection can progress to a severe disease with high fatality, raising public health concerns due to the limited prophylactic and therapeutic options available. Animal species, clinically unaffected by the virus, serve as viral reservoirs and amplifier hosts, and can be a valuable tool for surveillance. Little is known about the occurrence and prevalence of Crimean-Congo Haemorrhagic Fever Virus (CCHFV) in Cameroon. Knowledge on CCHFV exposure and the factors associated with its presence in sentinel species are a valuable resource to better understand transmission dynamics and assess local risks for zoonotic disease emergence.Methods and findingsWe conducted a CCHFV serological survey and risk factor analysis for animal level seropositivity in pastoral and dairy cattle in the North West Region (NWR) and the Vina Division (VD) of the Adamawa Region in Cameroon. Seroprevalence estimates were adjusted for sampling design-effects and test performance. In addition, explanatory multivariable logistic regression mixed-effects models were fit to estimate the effect of animal characteristics, husbandry practices, risk contacts and ecological features on the serological status of pastoral cattle. The overall seroprevalence was 56.0% (95% CI 53.5–58.6) and 6.7% (95% CI 2.6–16.1) among pastoral and dairy cattle, respectively. Animals going on transhumance had twice the odds of being seropositive (OR 2.0, 95% CI 1.1–3.8), indicating that animal movements could be implicated in disease expansion. From an ecological perspective, absolute humidity (OR 0.6, 95% CI 0.4–0.9) and shrub density (OR 2.1, 95% CI 1.4–3.2) were associated with seropositivity, which suggests an underlying viral dynamic connecting vertebrate host and ticks in a complex transmission network.ConclusionsThis study demonstrated high seroprevalence levels of CCHFV antibodies in cattle in Cameroon indicating a potential risk to human populations. However, current understanding of the underlying dynamics of CCHFV locally and the real risk for human populations is incomplete. Further studies designed using a One Health approach are required to improve local knowledge of the disease, host interactions and environmental risk factors. This information is crucial to better project the risks for human populations located in CCHFV-suitable ecological niches.  相似文献   
194.
  1. Recent advances in digital data collection have spurred accumulation of immense quantities of data that have potential to lead to remarkable ecological insight, but that also present analytic challenges. In the case of biologging data from birds, common analytical approaches to classifying movement behaviors are largely inappropriate for these massive data sets.
  2. We apply a framework for using K‐means clustering to classify bird behavior using points from short time interval GPS tracks. K‐means clustering is a well‐known and computationally efficient statistical tool that has been used in animal movement studies primarily for clustering segments of consecutive points. To illustrate the utility of our approach, we apply K‐means clustering to six focal variables derived from GPS data collected at 1–11 s intervals from free‐flying bald eagles (Haliaeetus leucocephalus) throughout the state of Iowa, USA. We illustrate how these data can be used to identify behaviors and life‐stage‐ and age‐related variation in behavior.
  3. After filtering for data quality, the K‐means algorithm identified four clusters in >2 million GPS telemetry data points. These four clusters corresponded to three movement states: ascending, flapping, and gliding flight; and one non‐moving state: perching. Mapping these states illustrated how they corresponded tightly to expectations derived from natural history observations; for example, long periods of ascending flight were often followed by long gliding descents, birds alternated between flapping and gliding flight.
  4. The K‐means clustering approach we applied is both an efficient and effective mechanism to classify and interpret short‐interval biologging data to understand movement behaviors. Furthermore, because it can apply to an abundance of very short, irregular, and high‐dimensional movement data, it provides insight into small‐scale variation in behavior that would not be possible with many other analytical approaches.
  相似文献   
195.
Resolving the genetic population structure of species inhabiting pristine, high latitude ecosystems can provide novel insights into the post‐glacial, evolutionary processes shaping the distribution of contemporary genetic variation. In this study, we assayed genetic variation in lake trout (Salvelinus namaycush) from Great Bear Lake (GBL), NT and one population outside of this lake (Sandy Lake, NT) at 11 microsatellite loci and the mtDNA control region (d‐loop). Overall, population subdivision was low, but significant (global FST θ = 0.025), and pairwise comparisons indicated that significance was heavily influenced by comparisons between GBL localities and Sandy Lake. Our data indicate that there is no obvious genetic structure among the various basins within GBL (global FST = 0.002) despite the large geographic distances between sampling areas. We found evidence of low levels of contemporary gene flow among arms within GBL, but not between Sandy Lake and GBL. Coalescent analyses suggested that some historical gene flow occurred among arms within GBL and between GBL and Sandy Lake. It appears, therefore, that contemporary (ongoing dispersal and gene flow) and historical (historical gene flow and large founding and present‐day effective population sizes) factors contribute to the lack of neutral genetic structure in GBL. Overall, our results illustrate the importance of history (e.g., post‐glacial colonization) and contemporary dispersal ecology in shaping genetic population structure of Arctic faunas and provide a better understanding of the evolutionary ecology of long‐lived salmonids in pristine, interconnected habitats.  相似文献   
196.
In a survey conducted to determine enrichment activities for indoor cats in the caregivers' homes, 304 indoor-cat caregivers answered structured interviews about their cats' use of windows and other “fun activities. ”The survey asked caregivers about durations of window use, what cats watched through the windows, and in what other fun activities cats freely participated. The results indicate that, of 577 cats, 84.3% looked out windows a total of 5 hr or less a day, that cats observed 14 different categories of outdoor stimuli, and that cats participated in 17 categories of “other ”fun activities. These results suggest that cats use windows and sunlight much less often than the welfare community may expect but that caregivers (owners), when possible, should consider providing access to these.  相似文献   
197.
Endothelial cell (EC) migration is critical in wound healing and angiogenesis. Fluid shear stress due to blood flow plays an important role in EC migration. However, the role of EC surface heparan sulfate proteoglycans (HSPGs) in EC adhesion, migration, and mechanotransduction is not well understood. Here, we investigated the effects of HSPG disruption on the adhesion, migration, and mechanotransduction of ECs cultured on fibronectin. We showed that disruption of HSPGs with heparinase decreased EC adhesion rate by 40% and adhesion strength by 33%. At the molecular level, HSPG disruption decreased stress fibers and the size of focal adhesions (FAs), increased filopodia formation, and enhanced EC migration. Under flow condition, heparinase treatment increased EC migration speed, but inhibited shear stress-induced directionality of EC migration and the recruitment of phosphorylated focal adhesion kinase in the flow direction, suggesting that HSPGs are important for sensing the direction of shear stress. In addition, decreasing cell adhesion by lowering fibronectin density enhanced EC migration under static and flow condition, but did not affect the directional migration of ECs under flow. Based on our results, we propose that HSPGs play dual roles as mechanotransducer on the EC surface: (1) HSPGs-matrix interaction on the abluminal surface regulates EC migration speed through an adhesion-dependent manner, and (2) HSPGs without binding to matrix (e.g., on the luminal surface) are involved in sensing the direction of flow through an adhesion-independent manner.  相似文献   
198.
The recently identified human and rodent plasma membrane proteins CNT1, CNT2 and CNT3 belong to a gene family (CNT) that also includes the bacterial nucleoside transport protein NupC. Heterologous expression in Xenopus oocytes has established that CNT1-3 correspond functionally to the three major concentrative nucleoside transport processes found in human and other mammalian cells (systems cit, cif and cib, respectively) and mediate Na(+) - linked uptake of both physiological nucleosides and anti-viral and anti-neoplastic nucleoside drugs. Here, one describes a complementary Xenopus oocyte transport study of Escherichia coli NupC using the plasmid vector pGEM-HE in which the coding region of NupC was flanked by 5'- and 3'-untranslated sequences from a Xenopus beta-globin gene. Recombinant NupC resembled human (h) and rat (r) CNT1 in nucleoside selectivity, including an ability to transport adenosine and the chemotherapeutic drugs 3'-azido-3'-deoxythymidine (AZT), 2',3'- dideoxycytidine (ddC) and 2'-deoxy-2',2'-difluorocytidine (gemcitabine), but also interacted with inosine and 2',3'- dideoxyinosine (ddl). Apparent affinities were higher than for hCNT1, with apparent K(m) values of 1.5-6.3 microM for adenosine, uridine and gemcitabine, and 112 and 130 microM, respectively, for AZT and ddC. Unlike the relatively low translocation capacity of hCNT1 and rCNT1 for adenosine, NupC exhibited broadly similar apparent V(max) values for adenosine, uridine and nucleoside drugs. NupC did not require Na(+) for activity and was H(+) - dependent. The kinetics of uridine transport measured as a function of external pH were consistent with an ordered transport model in which H(+) binds to the transporter first followed by the nucleoside. These experiments establish the NupC-pGEM-HE/oocyte system as a useful tool for characterization of NupC-mediated transport of physiological nucleosides and clinically relevant nucleoside therapeutic drugs.  相似文献   
199.
In carbohydrate-based fermentations of Saccharopolyspora erythraea, a polar knockout of the methylmalonyl-CoA mutase (MCM) gene, mutB, improved erythromycin production an average of 126% (within the range of 102–153% for a 0.95 confidence interval). In oil-based fermentations, where erythromycin production by the wild-type strain averages 184% higher (141–236%, 0.95 CI) than in carbohydrate-based fermentations, the same polar knockout in mutB surprisingly reduced erythromycin production by 66% (53–76%, 0.95 CI). A metabolic model is proposed where in carbohydrate-based fermentations MCM acts as a drain on the methylmalonyl-CoA metabolite pool, and in oil-based fermentations, MCM acts in the reverse direction to fill the methylmalonyl-CoA pool. Therefore, the model explains, in part, how the well-known oil-based process improvement for erythromycin production operates at the biochemical level; furthermore, it illustrates how the mutB erythromycin strain improvement mutation operates at the genetic level in carbohydrate-based fermentations.  相似文献   
200.
Necrotizing enterocolitis (NEC) is the most common gastrointestinal disease of premature infants. However, despite significant morbidity and mortality, the etiology and pathogenesis of NEC are poorly understood. Evidence suggests that ileal proinflammatory mediators such as IL-18 contribute to the pathology associated with this disease. In addition, we have previously shown that upregulation of TNF-alpha in the liver is correlated with ileal disease severity in a neonatal rat model of NEC. With the use of a neonatal rat model of NEC, we evaluated the incidence and severity of ileal damage along with the production of both hepatic and ileal proinflammatory cytokines in animals injected with (anti-TNF-alpha; n = 23) or without (NEC; n = 25) a monoclonal anti-TNF-alpha antibody. In addition, we assessed changes in apoptosis and ileal permeability in the NEC and anti-TNF-alpha groups. Ileal damage was significantly decreased, and the incidence of NEC was reduced from 80% to 17% in animals receiving anti-TNF-alpha. Hepatic TNF-alpha and hepatic and ileal IL-18 were significantly decreased in pups given anti-TNF-alpha compared with those sham injected. In addition, ileal luminal levels of both TNF-alpha and IL-18 were significantly decreased in the anti-TNF-alpha-injected group. Ileal paracellular permeability and the proapoptotic markers Bax and cleaved caspase-3 were significantly decreased in the anti-TNF-alpha group. These data show that hepatic TNF-alpha is an important component for the development of NEC in the neonatal rat model and suggest that anti-TNF-alpha could be used as a potential therapy for human NEC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号