首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1422篇
  免费   144篇
  2023年   7篇
  2022年   13篇
  2021年   30篇
  2020年   20篇
  2019年   34篇
  2018年   27篇
  2017年   25篇
  2016年   38篇
  2015年   62篇
  2014年   82篇
  2013年   75篇
  2012年   125篇
  2011年   98篇
  2010年   61篇
  2009年   67篇
  2008年   67篇
  2007年   93篇
  2006年   68篇
  2005年   71篇
  2004年   63篇
  2003年   67篇
  2002年   57篇
  2001年   28篇
  2000年   21篇
  1999年   25篇
  1998年   15篇
  1997年   12篇
  1996年   11篇
  1995年   5篇
  1994年   8篇
  1993年   12篇
  1992年   15篇
  1991年   10篇
  1990年   8篇
  1989年   13篇
  1988年   13篇
  1987年   8篇
  1985年   8篇
  1984年   14篇
  1983年   11篇
  1982年   8篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1977年   4篇
  1975年   4篇
  1974年   4篇
  1971年   5篇
  1969年   4篇
  1968年   4篇
排序方式: 共有1566条查询结果,搜索用时 148 毫秒
961.
Dietary analyses of Atlantic salmon Salmo salar post-smolt stomachs collected from 2001 to 2005 in Penobscot Bay, Maine, U.S.A., have yielded insights into the feeding ecology of early marine phase post-smolts from different rearing origins. Most stomachs contained only one or two prey types, suggesting active prey selection. Post-smolts that lived in the river longer (i.e. from naturally reared and parr-stocked origins) were smaller and consumed more fishes than invertebrates compared to larger post-smolts that emigrated immediately post-stocking (i.e. from smolt-stocked origins). Naturally reared S. salar consumed c. 84% fishes and 16% crustaceans and parr-stocked S. salar consumed 64% fishes and 34% crustaceans. Stocked smolts consumed 48% fishes and 40% crustaceans. Differences in the type and quantity of consumed prey may be indicative of behavioural differences among rearing origins that influence post-smolt survival.  相似文献   
962.
Across the globe, honey bee populations have been declining at an unprecedented rate. Managed honey bees are highly social, frequent a multitude of environmental niches, and continually share food, conditions that promote the transmission of parasites and pathogens. Additionally, commercial honey bees used in agriculture are stressed by crowding and frequent transport, and exposed to a plethora of agricultural chemicals and their associated byproducts. When considering this problem, the hive of the honey bee may be best characterized as an extended organism that not only houses developing young and nutrient rich food stores, but also serves as a niche for symbiotic microbial communities that aid in nutrition and defend against pathogens. The niche requirements and maintenance of beneficial honey bee symbionts are largely unknown, as are the ways in which such communities contribute to honey bee nutrition, immunity, and overall health. In this review, we argue that the honey bee should be viewed as a model system to examine the effect of microbial communities on host nutrition and pathogen defense. A systems view focused on the interaction of the honey bee with its associated microbial community is needed to understand the growing agricultural challenges faced by this economically important organism. The road to sustainable honey bee pollination may eventually require the detoxification of agricultural systems, and in the short term, the integrated management of honey bee microbial systems.  相似文献   
963.
964.
Human digestive carboxypeptidases CPA1, CPA2, and CPB1 are secreted by the pancreas as inactive proenzymes containing a 94-96-amino acid-long propeptide. Activation of procarboxypeptidases is initiated by proteolytic cleavage at the C-terminal end of the propeptide by trypsin. Here, we demonstrate that subsequent cleavage of the propeptide by chymotrypsin C (CTRC) induces a nearly 10-fold increase in the activity of trypsin-activated CPA1 and CPA2, whereas CPB1 activity is unaffected. Other human pancreatic proteases such as chymotrypsin B1, chymotrypsin B2, chymotrypsin-like enzyme-1, elastase 2A, elastase 3A, or elastase 3B are inactive or markedly less effective at promoting procarboxypeptidase activation. On the basis of these observations, we propose that CTRC is a physiological co-activator of proCPA1 and proCPA2. Furthermore, the results confirm and extend the notion that CTRC is a key regulator of digestive zymogen activation.  相似文献   
965.
The rising cost of musculoskeletal pathology, disease, and injury creates a pressing need for accurate and reliable methods to quantify 3D musculoskeletal motion, fostering a renewed interest in this area over the past few years. To date, cine-phase contrast (PC) MRI remains the only technique capable of non-invasively tracking in vivo 3D musculoskeletal motion during volitional activity, but current scan times are long on the 1.5T MR platform (~2.5 min or 75 movement cycles). With the clinical availability of higher field strength magnets (3.0T) that have increased signal-to-noise ratios, it is likely that scan times can be reduced while improving accuracy. Therefore, the purpose of this study is to validate cine-PC MRI on a 3.0T platform, in terms of accuracy, precision, and subject-repeatability, and to determine if scan time could be minimized. On the 3.0T platform it is possible to limit scan time to 2 min, with sub-millimeter accuracy (<0.33 mm/0.97°), excellent technique precision (<0.18°), and strong subject-repeatability (<0.73 mm/1.10°). This represents reduction in imaging time by 25% (42 s), a 50% improvement in accuracy, and a 72% improvement in technique precision over the original 1.5T platform. Scan time can be reduced to 1 min (30 movement cycles), but the improvements in accuracy are not as large.  相似文献   
966.
Genome-wide association (GWA) studies represent a powerful strategy for identifying susceptibility genes for complex diseases in human populations but results must be confirmed and replicated. Because of the close homology between mouse and human genomes, the mouse can be used to add evidence to genes suggested by human studies. We used the mouse quantitative trait loci (QTL) map to interpret results from a GWA study for genes associated with plasma HDL cholesterol levels. We first positioned single nucleotide polymorphisms (SNPs) from a human GWA study on the genomic map for mouse HDL QTL. We then used mouse bioinformatics, sequencing, and expression studies to add evidence for one well-known HDL gene (Abca1) and three newly identified genes (Galnt2, Wwox, and Cdh13), thus supporting the results of the human study. For GWA peaks that occur in human haplotype blocks with multiple genes, we examined the homologous regions in the mouse to prioritize the genes using expression, sequencing, and bioinformatics from the mouse model, showing that some genes were unlikely candidates and adding evidence for candidate genes Mvk and Mmab in one haplotype block and Fads1 and Fads2 in the second haplotype block. Our study highlights the value of mouse genetics for evaluating genes found in human GWA studies.  相似文献   
967.
According to written sources, Roma (Romanies, Gypsies) arrived in the Balkans around 1,000 years ago from India and have subsequently spread through several parts of Europe. Genetic data, particularly from the Y chromosome, have supported this model, and can potentially refine it. We now provide an analysis of Y-chromosomal markers from five Roma and two non-Roma populations (N = 787) in order to investigate the genetic relatedness of the Roma population groups to one another, and to gain further understanding of their likely Indian origins, the genetic contribution of non-Roma males to the Roma populations, and the early history of their splits and migrations in Europe. The two main sources of the Roma paternal gene pool were identified as South Asian and European. The reduced diversity and expansion of H1a-M82 lineages in all Roma groups imply shared descent from a single paternal ancestor in the Indian subcontinent. The Roma paternal gene pool also contains a specific subset of E1b1b1a-M78 and J2a2-M67 lineages, implying admixture during early settlement in the Balkans and the subsequent influx into the Carpathian Basin. Additional admixture, evident in the low and moderate frequencies of typical European haplogroups I1-M253, I2a-P37.2, I2b-M223, R1b1-P25, and R1a1-M198, has occurred in a more population-specific manner.  相似文献   
968.
Structural characterization of G protein-coupled receptors (GPCRs) is hindered by the inherent hydrophobicity, flexibility, and large size of these signaling proteins. Insights into conformational preferences and the three-dimensional (3D) structure of domains of these receptors can be obtained using polypeptide fragments of these proteins. Herein, we report the expression, purification, and biophysical characterization of a three-transmembrane domain-containing 131-residue fragment of the yeast α-factor receptor, Ste2p. Ste2p TM1–TM3 (G31–R161) was expressed as a TrpΔLE fusion protein in Escherichia coli. The expressed protein was subject to CNBr cleavage to remove the fusion tag and TM1–TM3 was purified by reverse-phased HPLC. The cleavage product was isolated in yields of up to 20 mg per liter of culture in both unlabeled and uniformly [15N]-labeled and [15N, 13C, 2H]-labeled forms. The secondary structure of TM1–TM3 was determined to be helical in a number of membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE):water and lysomyristoylphosphatidylglycerol (LMPG) detergent micelles by circular dichroism. Preliminary HSQC analysis in 50% TFE:water and LMPG micelles prepared in sodium phosphate and 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES) buffers revealed that this fragment is suitable for structural analysis by nuclear magnetic resonance (NMR). Complete backbone assignments and a detailed localization of the secondary structural elements of TM1–TM3 in 50% TFE:water have been achieved.  相似文献   
969.
Increased membrane fluidity, which causes cofactor leakage and loss of membrane potential, has long been documented as a cause for decreased cell growth during exposure to ethanol, butanol, and other alcohols. Reinforcement of the membrane with more complex lipid components is thus thought to be beneficial for the generation of more tolerant organisms. In this study, organisms with more complex membranes, namely, archaea, did not maintain high growth rates upon exposure to alcohols, indicating that more complex lipids do not necessarily fortify the membrane against the fluidizing effects of alcohols. In the presence of alcohols, shifts in lipid composition to more saturated and unbranched lipids were observed in most of the organisms tested, including archaea, yeasts, and bacteria. However, these shifts did not always result in a decrease in membrane fluidity or in greater tolerance of the organism to alcohol exposure. In general, organisms tolerating the highest concentrations of alcohols maintained membrane fluidity after alcohol exposure, whereas organisms that increased membrane rigidity were less tolerant. Altered lipid composition was a common response to alcohol exposure, with the most tolerant organisms maintaining a modestly fluid membrane. Our results demonstrate that increased membrane fluidity is not the sole cause of growth inhibition and that alcohols may also denature proteins within the membrane and cytosol, adversely affecting metabolism and decreasing cell growth.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号