首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3892篇
  免费   401篇
  国内免费   1篇
  2023年   11篇
  2022年   39篇
  2021年   84篇
  2020年   54篇
  2019年   47篇
  2018年   86篇
  2017年   81篇
  2016年   132篇
  2015年   234篇
  2014年   229篇
  2013年   267篇
  2012年   325篇
  2011年   351篇
  2010年   229篇
  2009年   182篇
  2008年   261篇
  2007年   266篇
  2006年   241篇
  2005年   174篇
  2004年   162篇
  2003年   168篇
  2002年   148篇
  2001年   33篇
  2000年   22篇
  1999年   40篇
  1998年   34篇
  1997年   18篇
  1996年   12篇
  1995年   16篇
  1994年   10篇
  1993年   10篇
  1992年   18篇
  1991年   11篇
  1990年   21篇
  1989年   13篇
  1988年   20篇
  1987年   23篇
  1986年   12篇
  1985年   13篇
  1983年   12篇
  1982年   14篇
  1981年   16篇
  1980年   11篇
  1977年   10篇
  1976年   14篇
  1975年   18篇
  1974年   22篇
  1973年   8篇
  1972年   15篇
  1970年   10篇
排序方式: 共有4294条查询结果,搜索用时 15 毫秒
41.
The surface-bound ActA polypeptide of the intracellular bacterial pathogen Listeria monocytogenes is the sole listerial factor needed for recruitment of host actin filaments by intracellularly motile bacteria. Here we report that following Listeria infection the host vasodilator-stimulated phosphoprotein (VASP), a microfilament- and focal adhesion-associated substrate of both the cAMP- and cGMP-dependent protein kinases, accumulates on the surface of intracytoplasmic bacteria prior to the detection of F-actin 'clouds'. VASP remains associated with the surface of highly motile bacteria, where it is polarly located, juxtaposed between one extremity of the bacterial surface and the front of the actin comet tail. Since actin filament polymerization occurs only at the very front of the tail, VASP exhibits properties of a host protein required to promote actin polymerization. Purified VASP binds directly to the ActA polypeptide in vitro. A ligand-overlay blot using purified radiolabelled VASP enabled us to identify the ActA homologue of the related intracellular motile pathogen, Listeria ivanovii, as a protein with a molecular mass of approximately 150 kDa. VASP also associates with actin filaments recruited by another intracellularly motile bacterial pathogen, Shigella flexneri. Hence, by the simple expedient of expressing surface-bound attractor molecules, bacterial pathogens effectively harness cytoskeletal components to achieve intracellular movement.  相似文献   
42.
Effects of manipulation of food supply on estuarine meiobenthos   总被引:1,自引:0,他引:1  
A comparative mesocosm experiment was carried out to determine the effects of natural foods of different quality and quantity on the structure of natural meiobenthic communities collected in undisturbed sediment from the polluted Westerschelde and the comparatively undisturbed Gironde estuaries. Nematode communities are more diverse and species rich in the latter estuary. The organic matter or foods used were phytoplankton, green alga, salt marsh plant detritus and leaf litter detritus which were added at three dose rates including a high dose. There was no change in community structure in response to the treatments in either of the estuarine meiobenthic communities. Analysis of all the results from this experiment indicate that the food quantity manipulations had almost no effect on the deposit feeding meiofauna. It may be that the reserves of organic matter within the sediment were sufficient to satisfy their dietary requirements for the duration of the experiment. The abundance of diatom/epigrowth feeding nematodes which were initially dominant in the Gironde, declined substantially suggesting that they may have been food limited since diatoms were not among the sources of organic matter added to the mesocosm. There was no specific response to the five different types of organic matter added to the mesocosm  相似文献   
43.
Epiphyses of the proximal tibiae of 7-week-old normal and homozygous recessive brachymorphic mice (bm/bm) were immunostained using a monoclonal antibody to basic fibroblast growth factor to determine its expression in growth plate cartilage, osteoblasts on the surfaces of the primary spongiosa and articular cartilage. In the normal growth plate, the immunoreactive factor was present in chondrocytes of the proliferating and upper hypertrophic zones but absent from lower hypertrophic chondrocytes. Immunostaining was present only in the territorial extracellular matrix immediately adjacent to the chondrocytes of the proliferating and upper hypertrophic zones. Osteoblasts of the primary spongiosa stained heavily in normal mice. Strong staining was observed in intermediate zone articular chondrocytes. Cells in the superficial layer of articular cartilage were unstained. The extracellular matrix of the articular cartilage was completely free of immunostaining. In contrast, the reduced size of bm/bm growth plates was accompanied by significantly reduced staining intensity in proliferating and upper hypertrophic chondrocytes, and staining was absent from the territorial extracellular matrix of all zones of the bm/bm growth plate. Osteoblasts of the primary spongiosa of bm/bm mice stained less than those of normal mice. Articular cartilage chondrocytes in the intermediate zone stained with less intensity in bm/bm mice, and the cells of the superficial layer were unstained. The extracellular matrix of bm/bm articular cartilage was completely free of staining. Brachymorphic epiphyseal growth plate and articular chondrocytes, and osteoblasts in the primary spongiosa, express reduced amounts of immunoreactive fibroblast growth factor-2. This phenotypical characteristic may be associated with abnormal endochondral ossification and development of bone in brachymorphic mice  相似文献   
44.
45.
The sequence of the 110 nucleotide fragment located at the 3'-end of E.coli, P.vulgaris and A.punctata 23S rRNAs has been determined. The homology between the E.coli and P.vulgaris fragments is 90%, whereas that between the E.coli and A.punctate fragments is only 60%. The three rRNA fragments have sequences compatible with a secondary structure consisting of two hairpins. Using chemical and enzymatic methods recently developed for the study of the secondary structure of RNA, we demonstrated that one of these hairpins and part of the other are actually present in the three 3'-terminal fragments in solution. This supports the existence of these two hairpins in the intact molecule. Indeed, results obtained upon limited digestion of intact 23S RNA with T1 RNase were in good agreement with the existence of these two hairpins. We observed that the primary structures of the 3'-terminal regions of yeast 26S rRNA and X.laevis 28S rRNA are both compatible with a secondary structure similar to that found at the 3'-end of bacterial 23S rRNAs. Furthermore, both tobacco and wheat chloroplast 4.5S rRNAs can also be folded in a similar way as the 3'-terminal region of bacterial 23S rRNA, the 3'-end of chloroplast 4.5S rRNAs being complementary to the 5'-end of chloroplast 23S rRNA. This strongly reinforces the hypothesis that chloroplast 4.5S rRNA originates from the 3'-end of bacterial 23S rRNA and suggests that this rRNA may be base-paired with the 5'-end of chloroplast 23S rRNA. Invariant oligonucleotides are present at identical positions in the homologous secondary structures of E.coli 23S, yeast 26S, X.laevis 28S and wheat and tobacco 4.5S rRNAs. Surprisingly, the sequences of these oligonucleotides are not all conserved in the 3'-terminal regions of A.punctata or even P.vulgaris 23S rRNAs. Results obtained upon mild methylation of E.coli 50S subunits with dimethylsulfate strongly suggest that these invariant oligonucleotides are involved in RNA tertiary structure or in RNA-protein interactions.  相似文献   
46.
Plants are resistant to almost all of the microorganisms with which they come in contact. In response to invasion by a fungus, bacterium, or a virus, many plants produce low molecular weight compounds, phytoalexins, which inhibit the growth of microorganisms. Phytoalexins are produced whether or not the invading microorganism is a pathogen. The production of phytoalexins appears to be a widespread mechanism by which plants attempt to defend themselves against pests. Molecules of microbial origin which trigger phytoalexin accumulation in plants are called elicitors. Structural polysaccharides from the mycelial walls of several fungi elicit phytoalexin accumlation in plants. Approximately 10 ng of the polysaccharide elicits the accumulation in plants of more than sufficient amounts of phytoalexin to stop the growth of microorganisms in vitro. The best characterized elicitors have been demonstrated to be β-1,3-glucans with branches to the 6 position of some of the glucosyl residues. Oligosaccharides, produced by partial acid hydrolysis of the mycelial wall glucans, are exceptionally active elicitors. The smallest oligosaccharide which is still an effective elicitor is composed of about 8 sugar residues. Bacteria also elicit phytoalexin accumulation in plants, but the Rhizobium symbionts of legumes presumably have a mechanism which allows them to avoid either eliciting phytoalexin accumulation or the effects of the phytoalexins if they are accumulated. The lectins of legumes bind to the lipopolysaccharides of their symbiont, but not of their non-symbiont, Rhizobium. It is not known whether the lectin-lipopolysaccharide interaction is involved with the establishment of symbiosis. However, evidence will be presented that suggests that lectins are, in fact, enzymes capable of modifying the structurs of the lipopolysaccharides of their symbiont, but not of their non-symbiont, Rhizobium. It will also be shown that the lipopolysaccharides isolated from different Rhizobium species and from different strains of individual Rhizobium species have different sugar compositions. Thus, the different strains of a single Rhizobium species are as different from one another as the different species of Salmonella and other gram-negative bacteria. This conclusion is substantiated by experiments demonstrating that antibodies to the lipopolysaccharide from a single Rhizobium strain can differentiate that strain from other strains of the same species as well as from other Rhizobium species. The role in symbiosis of the strain-specific O-antigens is unknown.  相似文献   
47.
A 3300-base segment of Escherichia coli chromosomal DNA, cloned into pBR322, will complement a methionine auxotroph in which the lesion is a defective methionyl-tRNA synthetase with a much reduced affinity for methionine. Crude extracts of these transformants contain elevated levels of a protein which has a subunit molecular weight of 66 000, methionyl-tRNA synthetase aminoacylation activity in vitro and which cross-reacts with anti-(methionyl-tRNA synthetase) antibodies. This polypeptide is very slightly larger than the well-characterised and crystallised tryptic fragment of methionyl-tRNA synthetase. A DNA sequence of 1750 residues at one end of the cloned insert codes for a non-terminated open reading frame in which we can locate a large number of methionyl-tRNA synthetase tryptic and chymotryptic peptides. We have also sequenced 300 nucleotides upstream of this coding segment where we find a large invert repeat in the putative methionyl-tRNA synthetase promoter region.  相似文献   
48.
Sequence comparisons among methionyl-tRNA synthetases from different organisms reveal only one block of homology beyond the last beta strand of the mononucleotide fold. We have introduced a series of semi-conservative amino acid replacements in the conserved motif of yeast methionyl-tRNA synthetase. The results indicate that replacements of two polar residues (Asn584 and Arg588) affected specifically the aminoacylation reaction. The location of these residues in the tertiary structure of the enzyme is compatible with a direct interaction of the amino acid side-chains with the tRNA anticodon.  相似文献   
49.
Summary The growth of the endothelial cell (EC) is tightly regulated throughout the body. Many factors have been implicated in modulating EC growth including diffusible compounds, cell-to-cell interactions, and the extracellular matrix (ECM). Retinol, or vitamin A alcohol, has recently been shown to inhibit the growth of bovine capillary ECs, in vitro. Retinoids are known to modify ECM in other cell systems, and pure ECM components have been shown to effect EC growth rates. We, therefore, examined the role of the matrix in the retinol-induced inhibition of ECs. Cell-free matrices from control and vitamin A-treated ECs were prepared by removing cells with EGTA treatment after 7 d of culture. Matrix proteins were analyzed by solubilizing the matrices in 5M quanidine-HCl and performing Western blot analysis using specific antibodies to matrix proteins. In isolating the ECM, we observed that retinol-treated cultures of ECs were resistant to EGTA removal; retinol-treated ECs required twice the exposure time to EGTA to detach from their matrix than did controls cells. Western blot analysis of matrix proteins derived from control and retinol-treated EC cultures demonstrated a 1.6-fold increase in lamininβ chains and a 2.5-fold increase in fibronectin in the ECM of retinol-treated EC compared to control cell matrix. Functional properties of these matrices were assessed by plating control and Day 6 retinol-treated ECs onto the matrices and measuring attachment and growth by determining cell numbers at 24, 72, and 144 h. These studies revealed that control cells attached in greatest numbers to a control matrix whereas retinol-treated ECs preferentially attached to a matrix derived from retinol-treated cells. Furthermore, control ECs which grew rapidly on a control matrix were growth inhibited on a retinol-derived matrix. These data indicate that vitamin A treatment of ECs effects both their phenotype and influences the composition and the functional properties of their underlying ECM. These studies also demonstrate that alterations of the matrix are at least in part responsible for the growth inhibition of EC by retinol.  相似文献   
50.
Summary Ionic conductances of rabbit osteoclasts were investigated using both whole-cell and cell-attached configurations of the patch-clamp recording technique. The predominant conductance found in these cells was an inwardly rectifying K+ conductance. Whole-cell currents showed an N-shaped current-voltage (I–13;V) relation with inward current activated at potentials negative to EK. When external K+ was varied, I-V curves shifted 53 mV/10-fold change in [K+]out, as predicted for a K+-selective channel. Inward current was blocked by Ba2+ and showed a time-dependent decline at negative potentials, which was reduced in Na+-free external solution. Inward single-channel currents were recorded in the cell-attached configuration. Single-channel currents were identified as inward-rectifier K+ channels based on the following observations: (i) Unitary I-V relations rectified, with only inward current resolved. (ii) Unitary conductance () was 31 pS when recorded in the cell-attached configuration with 140 mm K+ in the pipette and was found to be dependent on [K+]. (iii) Addition of Ba2+ to the pipette solution abolished single-channel events. We conclude that rabbit osteoclasts possess inwardly rectifying K+ channels which give rise to the inward current recorded at negative potentials in the whole-cell configuration. This inwardly rectifying K+ current may be responsible for setting the resting membrane potential and for dissipating electrical potential differences which arise from electrogenic transport of protons across the osteoclast ruffled border.This work was supported by The Arthritis Society and the Medical Research Council of Canada. M.E.M.K. was supported by a fellowship, S.J.D. a development Grant and S.M.S. a scholarship from the Medical Research Council. We thank Dr. Zu Gang Zheng for help with scanning microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号