首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3560篇
  免费   345篇
  国内免费   1篇
  3906篇
  2024年   5篇
  2023年   12篇
  2022年   57篇
  2021年   80篇
  2020年   53篇
  2019年   47篇
  2018年   82篇
  2017年   80篇
  2016年   124篇
  2015年   227篇
  2014年   226篇
  2013年   257篇
  2012年   321篇
  2011年   342篇
  2010年   216篇
  2009年   178篇
  2008年   250篇
  2007年   259篇
  2006年   236篇
  2005年   163篇
  2004年   158篇
  2003年   158篇
  2002年   138篇
  2001年   21篇
  2000年   14篇
  1999年   33篇
  1998年   25篇
  1997年   15篇
  1996年   8篇
  1995年   11篇
  1994年   8篇
  1993年   9篇
  1992年   11篇
  1991年   7篇
  1990年   10篇
  1989年   4篇
  1988年   8篇
  1987年   5篇
  1986年   4篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   6篇
  1978年   2篇
  1976年   2篇
  1974年   2篇
  1972年   2篇
  1938年   1篇
排序方式: 共有3906条查询结果,搜索用时 421 毫秒
101.
Reggie-1/flotillin-2 and reggie-2/flotillin-1 are membrane raft associated proteins which have been implicated in growth factor signaling, phagocytosis, regulation of actin cytoskeleton and membrane trafficking. Membrane and raft association of reggies is mediated by myristoylation, palmitoylation and oligomerization. We have shown that upon EGF stimulation of cells, reggie-1 is tyrosine phosphorylated by Src kinase and endocytosed into late endosomes. Here we have analyzed the mechanism of the EGF-stimulated endocytosis of reggies in more detail and show that the Src-mediated phosphorylation of reggie-1 is not the driving force for endocytosis. However, hetero-oligomerization with reggie-2 is necessary for the translocation of reggie-1, which does not take place in the absence of reggie-2. In addition, the Y163F mutant of reggie-1, which is not capable of undergoing endocytosis, oligomerizes poorly with reggie-2. EGF stimulation results in changes in the size but not in the stoichiometry of the reggie hetero-oligomers, and reggie-1 oligomer size is decreased by knockdown of reggie-2. Based on our findings, we propose a model according to which reggie hetero-oligomers are dynamic, and changes in the size of the hetero-oligomers result in endocytosis of the complex from the plasma membrane.  相似文献   
102.
Genetic screens performed in model organisms have helped identify key components of the RNA interference (RNAi) pathway. Recessive genetic screens have recently become feasible through the use of mouse embryonic stem (ES) cells that are Bloom's syndrome protein (Blm) deficient. Here, we developed and performed a recessive genetic screen to identify components of the mammalian RNAi pathway in Blm-deficient ES cells. Genome-wide mutagenesis using a retroviral gene trap strategy resulted in the isolation of putative homozygous RNAi mutant cells. Candidate clones were confirmed by an independent RNAi-based reporter assay and the causative gene trap integration site was identified using molecular techniques. Our screen identified multiple mutant cell lines of Argonaute 2 (Ago2), a known essential component of the RNAi pathway. This result demonstrates that true RNAi components can be isolated by this screening strategy. Furthermore, Ago2 homozygous mutant ES cells provide a null genetic background to perform mutational analyses of the Ago2 protein. Using genetic rescue, we resolve an important controversy regarding the role of two phenylalanine residues in Ago2 activity.  相似文献   
103.
A biphasic process design is often applied in whole-cell biocatalysis if substrate and product have low water solubility, are unstable in water or toxic for the biocatalyst. Some water immiscible ionic liquids (ILs) with adequate distribution coefficients have already been applied successfully as second liquid phase, which acts as a substrate reservoir and in situ extractant for the product. In this work, 12 new ILs were evaluated with respect to their applicability in biphasic asymmetric reductions of prochiral ketones in comparison to 9 already published ILs. The ILs under study are composed of seven different cations and three different anions. Recombinant Escherichia coli was used as whole-cell biocatalyst overexpressing the genes of a Lactobacillus brevis alcohol dehydrogenase (LB-ADH) and a Candida boidinii formate dehydrogenase (CB-FDH) for cofactor regeneration. Best results were achieved if ionic liquids with [PF6]- and [NTF]-anions were applied, whereas [FAP]-ILs showed minor qualification, e.g., the use of [HMPL][NTF] as second liquid phase for asymmetric synthesis of (R)-2-octanol resulted in a space–time-yield of 180 g L−1 d−1, a chemical yield of 95% and an enantiomeric excess of 99.7% in a simple batch process.  相似文献   
104.
The molecular mechanisms by which mammalian receptor tyrosine kinases are negatively regulated remain largely unexplored. Previous genetic and biochemical studies indicate that Kekkon-1, a transmembrane protein containing leucine-rich repeats and an immunoglobulin-like domain in its extracellular region, acts as a feedback negative regulator of epidermal growth factor (EGF) receptor signaling in Drosophila melanogaster development. Here we tested whether the related human LRIG1 (also called Lig-1) protein can act as a negative regulator of EGF receptor and its relatives, ErbB2, ErbB3, and ErbB4. We observed that in co-transfected 293T cells, LRIG1 forms a complex with each of the ErbB receptors independent of growth factor binding. We further observed that co-expression of LRIG1 with EGF receptor suppresses cellular receptor levels, shortens receptor half-life, and enhances ligand-stimulated receptor ubiquitination. Finally, we observed that co-expression of LRIG1 suppresses EGF-stimulated transformation of NIH3T3 fibroblasts and that the inducible expression of LRIG1 in PC3 prostate tumor cells suppresses EGF- and neuregulin-1-stimulated cell cycle progression. Our observations indicate that LRIG1 is a negative regulator of the ErbB family of receptor tyrosine kinases and suggest that LRIG1-mediated receptor ubiquitination and degradation may contribute to the suppression of ErbB receptor function.  相似文献   
105.
106.
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4 −/−) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.  相似文献   
107.

Background

We analyzed the association between 53 genes related to DNA repair and p53-mediated damage response and serous ovarian cancer risk using case-control data from the North Carolina Ovarian Cancer Study (NCOCS), a population-based, case-control study.

Methods/Principal Findings

The analysis was restricted to 364 invasive serous ovarian cancer cases and 761 controls of white, non-Hispanic race. Statistical analysis was two staged: a screen using marginal Bayes factors (BFs) for 484 SNPs and a modeling stage in which we calculated multivariate adjusted posterior probabilities of association for 77 SNPs that passed the screen. These probabilities were conditional on subject age at diagnosis/interview, batch, a DNA quality metric and genotypes of other SNPs and allowed for uncertainty in the genetic parameterizations of the SNPs and number of associated SNPs. Six SNPs had Bayes factors greater than 10 in favor of an association with invasive serous ovarian cancer. These included rs5762746 (median OR(odds ratio)per allele = 0.66; 95% credible interval (CI) = 0.44–1.00) and rs6005835 (median ORper allele  = 0.69; 95% CI  = 0.53–0.91) in CHEK2, rs2078486 (median ORper allele  = 1.65; 95% CI = 1.21–2.25) and rs12951053 (median ORper allele  = 1.65; 95% CI = 1.20–2.26) in TP53, rs411697 (median OR rare homozygote  = 0.53; 95% CI  = 0.35 – 0.79) in BACH1 and rs10131 (median OR rare homozygote  =  not estimable) in LIG4. The six most highly associated SNPs are either predicted to be functionally significant or are in LD with such a variant. The variants in TP53 were confirmed to be associated in a large follow-up study.

Conclusions/Significance

Based on our findings, further follow-up of the DNA repair and response pathways in a larger dataset is warranted to confirm these results.  相似文献   
108.
Autism spectrum disorders (ASD) and schizophrenia are neurodevelopmental disorders for which recent evidence indicates an important etiologic role for rare copy number variants (CNVs) and suggests common genetic mechanisms. We performed cytogenomic array analysis in a discovery sample of patients with neurodevelopmental disorders referred for clinical testing. We detected a recurrent 1.4 Mb deletion at 17q12, which harbors HNF1B, the gene responsible for renal cysts and diabetes syndrome (RCAD), in 18/15,749 patients, including several with ASD, but 0/4,519 controls. We identified additional shared phenotypic features among nine patients available for clinical assessment, including macrocephaly, characteristic facial features, renal anomalies, and neurocognitive impairments. In a large follow-up sample, the same deletion was identified in 2/1,182 ASD/neurocognitive impairment and in 4/6,340 schizophrenia patients, but in 0/47,929 controls (corrected p = 7.37 × 10−5). These data demonstrate that deletion 17q12 is a recurrent, pathogenic CNV that confers a very high risk for ASD and schizophrenia and show that one or more of the 15 genes in the deleted interval is dosage sensitive and essential for normal brain development and function. In addition, the phenotypic features of patients with this CNV are consistent with a contiguous gene syndrome that extends beyond RCAD, which is caused by HNF1B mutations only.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号