首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3673篇
  免费   363篇
  国内免费   1篇
  2024年   5篇
  2023年   12篇
  2022年   58篇
  2021年   82篇
  2020年   55篇
  2019年   47篇
  2018年   83篇
  2017年   81篇
  2016年   126篇
  2015年   231篇
  2014年   230篇
  2013年   266篇
  2012年   320篇
  2011年   342篇
  2010年   216篇
  2009年   177篇
  2008年   252篇
  2007年   262篇
  2006年   237篇
  2005年   163篇
  2004年   156篇
  2003年   160篇
  2002年   140篇
  2001年   22篇
  2000年   12篇
  1999年   30篇
  1998年   26篇
  1997年   15篇
  1996年   10篇
  1995年   13篇
  1994年   9篇
  1993年   9篇
  1992年   12篇
  1991年   8篇
  1990年   7篇
  1988年   8篇
  1987年   9篇
  1986年   5篇
  1985年   6篇
  1984年   5篇
  1982年   7篇
  1980年   7篇
  1972年   4篇
  1971年   5篇
  1938年   5篇
  1936年   11篇
  1930年   16篇
  1929年   11篇
  1876年   5篇
  1874年   3篇
排序方式: 共有4037条查询结果,搜索用时 156 毫秒
31.
Summary Ionic conductances of rabbit osteoclasts were investigated using both whole-cell and cell-attached configurations of the patch-clamp recording technique. The predominant conductance found in these cells was an inwardly rectifying K+ conductance. Whole-cell currents showed an N-shaped current-voltage (I–13;V) relation with inward current activated at potentials negative to EK. When external K+ was varied, I-V curves shifted 53 mV/10-fold change in [K+]out, as predicted for a K+-selective channel. Inward current was blocked by Ba2+ and showed a time-dependent decline at negative potentials, which was reduced in Na+-free external solution. Inward single-channel currents were recorded in the cell-attached configuration. Single-channel currents were identified as inward-rectifier K+ channels based on the following observations: (i) Unitary I-V relations rectified, with only inward current resolved. (ii) Unitary conductance () was 31 pS when recorded in the cell-attached configuration with 140 mm K+ in the pipette and was found to be dependent on [K+]. (iii) Addition of Ba2+ to the pipette solution abolished single-channel events. We conclude that rabbit osteoclasts possess inwardly rectifying K+ channels which give rise to the inward current recorded at negative potentials in the whole-cell configuration. This inwardly rectifying K+ current may be responsible for setting the resting membrane potential and for dissipating electrical potential differences which arise from electrogenic transport of protons across the osteoclast ruffled border.This work was supported by The Arthritis Society and the Medical Research Council of Canada. M.E.M.K. was supported by a fellowship, S.J.D. a development Grant and S.M.S. a scholarship from the Medical Research Council. We thank Dr. Zu Gang Zheng for help with scanning microscopy.  相似文献   
32.
Previously we sequenced a partial cDNA clone encoding the 3' region of the message for the membrane receptor form of the heavy (mu) chain of the channel catfish which indicated that the first transmembrane (TM1) exon is spliced directly to the C mu 3 exon and not into a cryptic site within the CH4 exon, as occurs in other vertebrates. Studies utilizing polymerase chain reaction analysis of mRNA and further analysis of cDNA clones now confirm that the only detectable splicing pattern used in micron production by the channel catfish utilizes this C mu 3----TM1 pathway of pre-mRNA splicing.  相似文献   
33.
34.
Field studies indicate that the influence of environmental factors on growth rate and size and age at maturity in sailfin mollies (Poecilia latipinna) is inconsistent over time and suggest that the marked interdemic variation in male body size in this species is the result of genetic variation. However, the role of specific environmental factors in generating phenotypic variation must be studied under controlled conditions unattainable in nature. We raised newborn sailfin mollies from four populations in laboratory aquaria under all possible combinations of two temperatures, three salinities, and two food levels to examine explicitly the influence of these environmental factors. Males were much less susceptible than females to temperature variation and were generally less plastic than females in terms of all three traits. Members of both sexes matured at larger sizes and at later ages in less saline and in cooler environments. Food levels were not sufficiently different to affect the traits we studied. The effects of temperature and salinity were not synergistic. Males from different populations exhibited different average ages and sizes at maturity, but females did not. The magnitudes of the effects we found were not substantial enough to account for the consistent interdemic differences in male and female body size that have been observed previously. Our results also indicate that no single environmental factor is solely responsible for the environmental effects observed in field experiments on growth and development. These studies, together with other work, indicate that the strongest sources of interdemic variation are genetic differences in males and differences in postmaturation growth and survivorship in females.  相似文献   
35.
36.
37.
38.
39.
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.  相似文献   
40.
Ecosystems - Ecotones can form hot spots of biodiversity by containing species from multiple ecosystems. Because biodiversity is often linked to ecological function, we posit that rates of key...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号