首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3716篇
  免费   384篇
  国内免费   1篇
  4101篇
  2024年   5篇
  2023年   12篇
  2022年   60篇
  2021年   80篇
  2020年   53篇
  2019年   46篇
  2018年   83篇
  2017年   82篇
  2016年   127篇
  2015年   227篇
  2014年   230篇
  2013年   266篇
  2012年   330篇
  2011年   354篇
  2010年   220篇
  2009年   181篇
  2008年   257篇
  2007年   262篇
  2006年   247篇
  2005年   168篇
  2004年   169篇
  2003年   168篇
  2002年   150篇
  2001年   36篇
  2000年   23篇
  1999年   43篇
  1998年   31篇
  1997年   28篇
  1996年   14篇
  1995年   17篇
  1994年   11篇
  1993年   12篇
  1992年   17篇
  1991年   9篇
  1990年   10篇
  1989年   5篇
  1988年   10篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   4篇
  1980年   6篇
  1978年   2篇
  1976年   2篇
  1957年   1篇
  1943年   1篇
  1938年   1篇
排序方式: 共有4101条查询结果,搜索用时 0 毫秒
91.
The intensity of the mutualistic relationship between aphids and ants depends mainly on the composition and amount of honeydew. We used the model system Tanacetum vulgare-Metopeurum fuscoviride to study age-related differences in honeydew production and composition and its effect on the mutualism between M. fuscoviride and the ant Lasius niger. First and second instar larvae of M. fuscoviride produced only half of the amount of honeydew as older larvae or adults. There were, however, no differences between age classes in the total honeydew sugar concentration, which averaged approx. 80 μg sugar/μl honeydew. Honeydew sugar composition also did not differ between age classes, and melezitose was the dominant sugar (59% in all classes). The amino acid concentration, by contrast, increased significantly with aphid age, reaching 22.6 nmol per μl honeydew in adult M. fuscoviride. This increase was mainly caused by asparagine and glutamine, while there were no differences in the concentrations of the five other regularly detected amino acids and cystine, respectively. The intensity of ant-attendance was significantly lower in colonies of first and second instar larvae than in colonies of older age classes. Ant-attendance correlated with the amount of honeydew produced, and not with the total amino acid concentration.  相似文献   
92.
93.
During development, the growth of the embryo must be coupled to its patterning to ensure correct and timely morphogenesis. In the mouse embryo, migration of the anterior visceral endoderm (AVE) to the prospective anterior establishes the anterior-posterior (A-P) axis. By analysing the distribution of cells in S phase, M phase and G2 from the time just prior to the migration of the AVE until 18 hours after its movement, we show that there is no evidence for differential proliferation along the A-P axis of the mouse embryo. Rather, we have identified that as AVE movements are being initiated, the epiblast proliferates at a much higher rate than the visceral endoderm. We show that these high levels of proliferation in the epiblast are dependent on Nodal signalling and are required for A-P establishment, as blocking cell division in the epiblast inhibits AVE migration. Interestingly, inhibition of migration by blocking proliferation can be rescued by Dkk1. This suggests that the high levels of epiblast proliferation function to move the prospective AVE away from signals that are inhibitory to its migration. The finding that initiation of AVE movements requires a certain level of proliferation in the epiblast provides a mechanism whereby A-P axis development is coordinated with embryonic growth.  相似文献   
94.
Fibroblast growth factor receptor 3 (FGFR3) is a major negative regulator of bone growth that inhibits the proliferation and differentiation of growth plate chondrocytes. Activating mutations of its c isoform cause dwarfism in humans; somatic mutations can drive oncogenic transformation in multiple myeloma and bladder cancer. How these distinct activities arise is not clear. FGFR3 was previously shown to undergo proteolytic cleavage in the bovine rib growth plate, but this was not explored further. Here, we show that FGF1 induces regulated intramembrane proteolysis (RIP) of FGFR3. The ectodomain is proteolytically cleaved (S1) in response to ligand-induced receptor activation, but unlike most RIP target proteins, it requires endocytosis and does not involve a metalloproteinase. S1 cleavage generates a C-terminal domain fragment that initially remains anchored in the membrane, is phosphorylated, and is spatially distinct from the intact receptor. Ectodomain cleavage is followed by intramembrane cleavage (S2) to generate a soluble intracellular domain that is released into the cytosol and can translocate to the nucleus. We identify the S1 cleavage site and show that γ-secretase mediates the S2 cleavage event. In this way we demonstrate a mechanism for the nuclear localization of FGFR3 in response to ligand activation, which may occur in both development and disease.  相似文献   
95.
LKB1 is a 'master' protein kinase implicated in the regulation of metabolism, cell proliferation, cell polarity and tumorigenesis. However, the long-term role of LKB1 in hepatic function is unknown. In the present study, it is shown that hepatic LKB1 plays a key role in liver cellular architecture and metabolism. We report that liver-specific deletion of LKB1 in mice leads to defective canaliculi and bile duct formation, causing impaired bile acid clearance and subsequent accumulation of bile acids in serum and liver. Concomitant with this, it was found that the majority of BSEP (bile salt export pump) was retained in intracellular pools rather than localized to the canalicular membrane in hepatocytes from LLKB1KO (liver-specific Lkb1-knockout) mice. Together, these changes resulted in toxic accumulation of bile salts, reduced liver function and failure to thrive. Additionally, circulating LDL (low-density lipoprotein)-cholesterol and non-esterified cholesterol levels were increased in LLKB1KO mice with an associated alteration in red blood cell morphology and development of hyperbilirubinaemia. These results indicate that LKB1 plays a critical role in bile acid homoeostasis and that lack of LKB1 in the liver results in cholestasis. These findings indicate a novel key role for LKB1 in the development of hepatic morphology and membrane targeting of canalicular proteins.  相似文献   
96.
Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.  相似文献   
97.
Assimilatory and dissimilatory sulphite reductions are key reactions in the biogeochemical sulphur cycle and several distinct sirohaem-containing sulphite reductases have been characterized. Here, we describe that the Epsilonproteobacterium Wolinella succinogenes is able to grow by sulphite respiration (yielding sulphide) with formate as electron donor. Sulphite is reduced by MccA, a prototypical member of an emerging new class of periplasmic cytochrome c sulphite reductases that, phylogenetically, belongs to a multihaem cytochrome c superfamily whose members play crucial roles in the global sulphur and nitrogen cycles. Within this family, MccA represents an unconventional octahaem cytochrome c containing a special haem c group that is bound via two cysteine residues arranged in a unique CX(15)CH haem c binding motif. The phenotypes of numerous W.succinogenes mutants producing MccA variants underlined the structural importance of this motif. Several open reading frames of the mcc gene cluster were individually inactivated and characterization of the corresponding mutants indicated that the predicted iron-sulphur protein MccC, the putative quinol dehydrogenase MccD (a member of the NrfD/PsrC family) as well as a peptidyl-prolyl cis-trans isomerase, MccB, are essential for sulphite respiration. MccA synthesis in W. succinogenes was found to be induced by sulphite (but not by thiosulphate or sulphide) and repressed in the presence of fumarate or nitrate. Based on the results, a sophisticated model of respiratory sulphite reduction by the Mcc system is presented.  相似文献   
98.
A polypeptide of approximately 11 000 daltons (11 kDa protein) encoded by an open reading frame (10.9 ORF) from the virion sense of maize streak virus (MSV) DNA has been detected among the products of in vitro translation reactions programmed with RNA from infected maize plants and also in total protein extracts from infected leaves. The 11 kDa protein has not been detected in virions and is therefore proposed to have a nonstructural role.Viral DNA with an additional in-frame translation stop codon in the 10.9 ORF was not infectious when transmitted to maize plants via Agrobacterium tumefaciens agroinfection, suggesting that the 10.9 ORF may be essential for virus function. Computer comparison data show that equivalent ORFs in wheat dwarf virus (WDV) and digitaria streak virus (DSV) have some sequences in common with the 10.9 ORF of MSV. Further-more, the absence of similar sequences in geminiviruses which infect dicotyledonous plants suggests that the 11 kDa protein and its putative homologs in WDV and DSV have a function necessary only for those geminiviruses which infect the Gramineae.The significance of the 11 kDa protein in relation to expression of the virion sense DNA of MSV is discussed.  相似文献   
99.
The vertebrate embryonic vasculature develops from angioblasts, which are specified from mesodermal precursors and develop in close association with blood cells. The signals that regulate embryonic vasculogenesis and angiogenesis are incompletely understood. Here, we show that R-spondin 3 (Rspo3), a member of a novel family of secreted proteins in vertebrates that activate Wnt/beta-catenin signaling, plays a key role in these processes. In Xenopus embryos, morpholino antisense knockdown of Rspo3 induces vascular defects because Rspo3 is essential for regulating the balance between angioblast and blood cell specification. In mice, targeted disruption of Rspo3 leads to embryonic lethality caused by vascular defects. Specifically in the placenta, remodeling of the vascular plexus is impaired. In human endothelial cells, R-spondin signaling promotes proliferation and sprouting angiogenesis in vitro, indicating that Rspo3 can regulate endothelial cells directly. We show that vascular endothelial growth factor is an immediate early response gene and a mediator of R-spondin signaling. The results identify Rspo3 as a novel, evolutionarily conserved angiogenic factor in embryogenesis.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号