首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   23篇
  2023年   1篇
  2022年   2篇
  2021年   5篇
  2020年   3篇
  2019年   8篇
  2018年   8篇
  2017年   6篇
  2016年   12篇
  2015年   18篇
  2014年   11篇
  2013年   16篇
  2012年   23篇
  2011年   14篇
  2010年   12篇
  2009年   8篇
  2008年   18篇
  2007年   17篇
  2006年   16篇
  2005年   8篇
  2004年   8篇
  2003年   5篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   2篇
  1998年   1篇
  1994年   1篇
  1992年   4篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
  1985年   1篇
  1976年   1篇
排序方式: 共有253条查询结果,搜索用时 31 毫秒
31.
32.
A life-like virtual cell membrane using discrete automata   总被引:1,自引:0,他引:1  
A framework is presented that captures the discrete and probabilistic nature of molecular transport and reaction kinetics found in a living cell as well as formally representing the spatial distribution of these phenomena. This particle or agent-based approach is computationally robust and complements established methods. Namely it provides a higher level of spatial resolution than formulations based on ordinary differential equations (ODE) while offering significant advantages in computational efficiency over molecular dynamics (MD). Using this framework, a model cell membrane has been constructed with discrete particle agents that respond to local component interactions that resemble flocking or herding behavioural cues in animals. Results from simulation experiments are presented where this model cell exhibits many of the characteristic behaviours associated with its biological counterpart such as lateral diffusion, response to osmotic pressure gradients, membrane growth and cell division. Lateral diffusion rates and estimates for the membrane modulus of elasticity derived from these simple experiments fall well within a biologically relevant range of values. More importantly, these estimates were obtained by applying a simple qualitative tuning of the model membrane. Membrane growth was simulated by injecting precursor molecules into the proto-cell at different rates and produced a variety of morphologies ranging from a single large cell to a cluster of cells. The computational scalability of this methodology has been tested and results from benchmarking experiments indicate that real-time simulation of a complete bacterial cell will be possible within 10 years.  相似文献   
33.
The reaction mechanism of the esterase 2 (EST2) from Alicyclobacillus acidocaldarius was studied at the kinetic and structural level to shed light on the mechanism of activity and substrate specificity increase previously observed in its double mutant M211S/R215L. In particular, the values of kinetic constants (k1, k(-1), k2, and k3) along with activation energies (E1, E(-1), E2, and E3) were measured for wild type and mutant enzyme. The previously suggested substrate-induced switch in the reaction mechanism from kcat=k3 with a short acyl chain substrate (p-nitrophenyl hexanoate) to kcat=k2 with a long acyl chain substrate (p-nitrophenyl dodecanoate) was validated. The inhibition afforded by an irreversible inhibitor (1-hexadecanesulfonyl chloride), structurally related to p-nitrophenyl dodecanoate, was studied by kinetic analysis. Moreover the three-dimensional structure of the double mutant bound to this inhibitor was determined, providing essential information on the enzyme mechanism. In fact, structural analysis explained the observed substrate-induced switch because of an inversion in the binding mode of the long acyl chain derivatives with respect to the acyl- and alcohol-binding sites.  相似文献   
34.
The stability of acetyl-esterase, Aes, from Escherichia coli against the denaturing action of urea and guanidine hydrochloride, GuHCl, has been investigated by means of circular dichroism and fluorescence measurements. The urea-induced unfolding curves show a single inflection point at 6.2 M urea, whereas the GuHCl-induced curves show two inflection points at 1.4 and 3.1 M GuHCl. The unfolding process is reversible with both urea and GuHCl. These results, together with similar experimental data on the mutant form V20D-Aes, suggest the presence of two domains in the Aes structure, which unfold more or less independently depending on the denaturant used. This is also supported by a 3D model obtained by homology modeling using the structure of brefeldine as a template. The effect of NaCl on the urea-induced unfolding curves of the enzyme has also been investigated.  相似文献   
35.
Many aspects of the life cycle of torquetenoviruses (TTVs) are essentially unexplored. In particular, it is still a matter of speculation which cell type(s) replicates the viruses and maintains the generally high viral loads found in the blood of infected hosts. In this study, we sequentially measured the TTV loads in the plasma of four TTV-positive leukemia patients who were strongly myelosuppressed and then transplanted with haploidentical hematopoietic stem cells. The findings provide clear quantitative evidence for an extremely important role of hematopoietic cells in the maintenance of TTV viremia.Torquetenoviruses (TTVs) are small naked DNA viruses distinguished by a circular single-stranded DNA genome of only 3.8 kb, classified within the newly established family Anelloviridae (7). TTVs have been found in several animal species but do not appear capable of interspecies transmission. Due to their extensive genetic heterogeneity, human TTVs have been operatively subdivided into 5 genogroups and more than 40 genotypes (4). A remarkable feature of these TTVs is their presence in the plasma of nearly all people, regardless of geographical origin, age, and health status, raising many questions about their life cycle and possible pathological implications (2, 5). Plasma loads of TTVs vary extensively in both healthy and diseased individuals, usually ranging between 103 and 107 DNA copies per ml of plasma. However, some patients, including those with selected inflammatory or neoplastic disorders, transplant recipients, and human immunodeficiency virus-infected individuals, have a tendency to carry especially high burdens of TTVs (1, 6, 13, 22-24).By studying the dynamics of TTV viremia in individuals treated with alpha interferon for hepatitis C, the kinetics of virus replication was found to be quite high, with numbers of virions released into plasma and cleared from it daily on the same order of magnitude as other chronic plasma viremia-inducing viruses, such as the hepatitis B, hepatitis C, and human immunodeficiency viruses (16). Yet, due to considerable difficulties encountered in propagating TTVs in culture and in distinguishing the virions passively adsorbed onto the cells from the ones replicating inside cells, the tissue or tissues where these large numbers of TTV virions originate have yet to be established. Given that the amino acid compositions of the capsid protein believed to mediate viral adsorption to cells are quite diverse in different TTVs (2, 3, 9), it is also possible that permissive cells vary depending on the TTV considered. Relevant studies are limited. Short-term cultures of phytohemagglutinin-stimulated peripheral lymphocytes, but not resting lymphocytes were found to permit a measurable level of TTV replication (15, 18), indicative of at least a moderate degree of lymphotropism. On the other hand, the detection of replicative forms of TTV DNA in several tissues, including bone marrow, peripheral blood mononuclear cells, and liver, has suggested that TTVs might be polytropic in nature (2, 21).In 1999, Kanda et al. (10), researching TTV plasma of bone marrow transplant recipients with a qualitative PCR, noticed that 5 out of 6 previously positive patients tested negative in a sampling collected during the myelosuppressed period and became positive again after graft reconstitution, leading them to suggest that TTV might replicate mainly in hematopoietic cells. In the present study, we further developed this observation by measuring the TTV load in sequential plasma samples obtained from four TTV-positive leukemia patients undergoing hematopoietic stem cell transplantation. This procedure basically consists of a myeloablative conditioning regimen (chemotherapy plus radiotherapy) followed by reinfusion of a positively selected CD34+ stem cell population. The findings are of interest because, in addition to confirming the decrease of TTV load observed by Kanda et al., they shed light on the kinetics of the effect, thus providing a better insight onto the role of hematopoietic cells in the maintenance of TTV viremia and on the life cycle of TTV in general.Table Table11 summarizes the main characteristics of the patients selected for the study. They were treated with 10 Gy total-body irradiation (TBI) on day 0 and received 5 mg/kg/day thiotepa on days 2 and 3, 40 mg/m2/day fludarabine on days 3 to 7, and 1.2 mg/kg/day antithymocyte globulin on days 4 to 8, and then, on day 10, they received the indicated numbers of positively selected CD34+ hematopoietic stem cells from HLA-haploidentical donors. Peripheral blood samples were collected for TTV studies immediately before TBI and at selected times for the next 30 days, and plasma was stored in aliquots at −80°C until DNA extraction. The assay used for TTV quantification was a previously described highly sensitive TaqMan real-time PCR having the potential to detect and quantitate all hitherto recognized genetic forms of the virus (15, 16). All samples from each patient were assayed in a single run and in triplicate, and at least two independent DNA extractions for each sample were examined. The DNA extracts obtained at time zero were also typed with a previously described panel of five distinct PCR assays (12), each specific for one of the genogroups into which TTVs are subdivided. At the start of the study, the patients had viral loads ranging from 4.7 to 6.8 log copies per ml of plasma and harbored between 1 and 3 TTV genogroups (Table (Table1).1). In particular, all carried genogroup 1, which is highly represented in our area (12), and two carried one or two further genogroups. Consistent with previous findings (12), the patient who harbored three genogroups was the one with the highest viral load. As shown by Fig. Fig.1,1, in all four patients, TBI was followed by a steady decline of TTV viremia that continued for at least 22 days and progressively brought the virus to levels very close to the detection limit of the detection/quantitation method used, corresponding to values ranging between 0.003 (patient 3) and 0.00009 (patient 1) of the loads present prior to TBI. However, in no instance did the viral loads go below the limit of sensitivity of the assay (2 × 102 TTV DNA copies per ml of plasma). Although the size of the study does not permit firm conclusions on this aspect, it is noteworthy that the extent of decline was unrelated to the type and number of infecting TTV genogroup(s) originally present in the patients.Open in a separate windowFIG. 1.Plasma TTV loads and WBC counts in the peripheral blood of the 4 patients (Pt. 1 to 4) enrolled in the study. The arrow indicates the day the patients were infused with CD34+ hematopoietic stem cells from HLA-haploidentical donors. The horizontal broken line represents the lower limit of sensitivity of the TTV detection method used.

TABLE 1.

Relevant parameters of the patients enrolled
PatientAge in yr (sex)Clinical diagnosisaNo. of CD34 cells grafted (106 cells/kg)Survival (days)TTV in plasma
Pre-TBI
Post-TBI
No. of copies/mlGenogroup(s)No. of copies/mlbGenogroup(s)
154 (male)T-ALL23.60306.81, 3, 5NDcND
247 (female)ALL9.411744.71, 45.4 (day 80)1, 3, 4, 5
341 (female)B-ALL11.701115.314.2 (day 30)3
458 (female)AML5.902675.017.0 (day 110)1, 3, 4, 5
Open in a separate windowaT-ALL, T-cell acute lymphoblastic leukemia; B-ALL, B-cell acute lymphoblastic leukemia; AML, acute myeloid leukemia.bThe day post-TBI when TTV loads and genogroups were determined is shown in parentheses.cND, not determined.The viral loads observed during the phase of maximum decline (days 0 to 12) were then exploited to investigate the dynamics of TTV infection in the patients by using the mathematical model originally developed by Neumann et al. (20). The results of this analysis are shown in Table Table2.2. The mean clearance rate of circulating TTVs was 3.8 days−1. The half-life of plasma TTVs ranged between 3.6 and 4.8 h, with a mean of 4.3 h, which is a little shorter than previously calculated in patients treated with alpha interferon (16), possibly due to the fact that TBI may have led to a more complete block of viral replication. Overall, however, these values coupled with the calculated numbers of virions produced per day (Table (Table2)2) are a further demonstration that TTV infection is highly dynamic.

TABLE 2.

TTV dynamics in the patients enrolled
PatientViral parameter
Clearance rate (c [days−1])Virion half-life (days)aMinimal input and clearance of plasma virions/dayb
13.80.187.8 × 1010
24.50.156.7 × 109
33.70.192.1 × 109
43.50.209.6 × 108
Mean ± SE3.8 ± 0.20.18 ± 0.012.0 × 1010 ± 1.0 × 1010
Open in a separate windowaCalculated by the equation ln (2)/c.bDaily production of plasma virions was calculated from c multiplied by the pre-TBI viremia load value and by extracellular body fluid volume, which was arbitrarily set at 3.0 × 103 ml.One patient died of multiorgan failure a few h after the 30-day sampling point without noticeable changes in either TTV viremia and white blood cell (WBC) counts. The other patients, starting from day 26, showed a generally moderate but consistent increase of TTV viremia, so that by the end of the 30-day observation period their viral loads were still somewhat to considerably lower than at baseline (Fig. (Fig.1).1). Interestingly, the increase paralleled the reappearance of WBCs in peripheral blood, a clear indicator of substantial engraftment. For two patients, we could also examine plasma samples collected at days 50, 80, and 110. As shown by the inserts in Fig. Fig.1,1, at these times both patients exhibited plasma TTV loads higher than at baseline, indicating that TTV shedding into plasma had resumed and was as abundant as or even more abundant than that at the start of the study. Interestingly, the spectrum of TTV genogroups detected in plasma at this time differed substantially from pre-TBI (Table (Table1),1), indicating that the patients were now replicating newly acquired TTVs, most likely transmitted by the graft or blood component transfusions required to sustain the procedure.Collectively, these findings provide solid quantitative evidence that hematopoietic stem cells represent by far the most important, if not the only source of the generally high TTV burdens found in the blood of infected individuals. The alternative explanation that hematopoietic cells or cytokines produced by them might stimulate other cells to replicate TTV seems less likely. Not only did plasma TTV loads fall dramatically during the myelosuppressed period, but also graft reconstitution was accompanied by a parallel return to high TTV loads. That TTVs have a preference for a highly cycling cell compartment is consistent with the well-established notion that single-stranded DNA viruses, including parvoviruses and circoviruses, have a marked preference for or replicate exclusively in DNA-synthesizing cells (14). The minimal levels of viremia that persisted during myelosuppression might suggest that some TTV replication takes place as well outside the hematopoietic compartment. However, since posttransplant the viral genogroups harbored by the patients were at least partly different from the ones harbored pretransplant, it is also possible that such low viral loads were generated by the hematopoietic cells infused into the patients.The viruses that lack an external lipid envelope are usually cytolytic for the cells in which they replicate. Future studies should therefore focus on clarifying which specific cell type or types within the hematopoietic cell compartment support TTV replication. A preferential replication within the lymphoid cell lineage might explain some of the immunomodulating properties attributed to the TTVs (6, 14, 17), while a preference for the erythroid lineage might explain the cases of aplastic anemia that have been associated with TTV infection (8, 11, 19). On the other hand, the circumstance that the great majority of TTV infections do not emerge clinically is most likely explained by the large regenerative potential of the hematopoietic compartment.  相似文献   
36.
We describe the first genetic linkage map for Daphnia pulex using 185 microsatellite markers, including 115 new markers reported in this study. Our approach was to study the segregation of polymorphisms in 129 F2 progeny of one F1 hybrid obtained by crossing two genetically divergent lineages of Daphnia isolated from two Oregon populations. The map spanned 1206 Kosambi cM and had an average intermarker distance of 7 cM. Linkage groups ranged in size from 7 to 185 cM and contained 4 to 27 markers. The map revealed 12 linkage groups corresponding to the expected number of chromosomes and covers approximately 87% of the genome. Tests for random segregation of alleles at individual loci revealed that 21% of the markers showed significant transmission ratio distortion (primarily homozygote deficiency) likely due to markers being linked to deleterious recessive alleles. This map will become the anchor for the physical map of the Daphnia genome and will serve as a starting point for mapping single and quantitative trait loci affecting ecologically important phenotypes. By mapping 342 tentative orthologous gene pairs (Daphnia/Drosophila) into the Daphnia linkage map, we facilitate future comparative projects.  相似文献   
37.
Decay-accelerating factor (CD55) is a complement regulatory protein, which is expressed by most cells to protect them from complement-mediated attack. CD55 also binds CD97, an EGF-TM7 receptor constitutively expressed on granulocytes and monocytes and rapidly up-regulated on T and B cells upon activation. Early results suggested that CD55 could further enhance T cell proliferation induced by phorbol ester treatment. The present study demonstrates that coengagement of CD55, using either cross-linking mAbs or its natural ligand CD97, and CD3 results in enhanced proliferation of human peripheral blood CD4(+) T cells, expression of the activation markers CD69 and CD25, and secretion of IL-10 and GM-CSF. Recently, an increase in T cell responsiveness in CD55(-/-) mice was shown to be mediated by a lack of complement regulation. In this study, we show that direct stimulation of CD55 on CD4(+) T cells with CD97 can modulate T cell activation but does not interfere with CD55-mediated complement regulation. Our results support a multifaceted role for CD55 in human T cell activation, constituting a further link between innate and adaptive immunity.  相似文献   
38.
Hormone-sensitive lipase (HSL) contributes importantly to the mobilization of fatty acids from the triacylglycerols stored in adipocytes, which provide the main source of energy in mammals. On the basis of amino acid sequence alignments and three-dimensional structures, this enzyme was previously found to be a suitable template for defining a family of serine carboxylester hydrolases. In this study, the HSL family members are characterized rather on the basis of their inhibition by 5-methoxy-3-(4-phenoxyphenyl)-3H-[1,3,4]oxadiazol-2-one (compound 7600). This compound inhibits mammalian HSL as well as other HSL family members, such as EST2 from the thermophilic eubacterium Alicyclobacillus acidocaldarius and AFEST from the hyperthermophilic archaeon Archaeoglobus fulgidus. Various carboxylester hydrolases that are not members of the HSL family were found not to be inhibited by compound 7600 under the same experimental conditions. These include nonlipolytic hydrolases such as Torpedo californica acetylcholinesterase and pig liver esterase, as well as lipolytic hydrolases such as human pancreatic lipase, dog gastric lipase, Thermomyces lanuginosus lipase, and Bacillus subtilis LipA. When vinyl esters were used as substrates, the residual activity of HSL, AFEST, and EST2 decreased with an increase in compound 7600 concentration in the incubation mixture. The inhibitor concentration at which the enzyme activity decreased to 50% after incubation for 5 min was 70, 20, and 15 nM with HSL, AFEST, and EST2, respectively. Treating EST2 and AFEST with the inhibitor resulted in an increase in the molecular mass, as established by performing matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis. This increase in the molecular mass, which corresponds approximately to the molecular mass of the inhibitor, indicates that a covalent enzyme-inhibitor complex has been formed. Surface-enhanced laser desorption ionization time-of-flight mass spectrometry analysis of a trypsin digest of AFEST treated with the inhibitor or not treated showed the occurrence of an increase in the molecular masses of the "GESAGG"-containing peptide, which is compatible with the formation of a covalent complex with the inhibitor.  相似文献   
39.
The gamma-irradiation of bovine pancreatic ribonuclease A (RNase A) in aqueous solution were investigated at different doses by vibrational spectroscopy as well as enzymatic assay, electrophoresis, and HPLC analysis. Both functional and structural changes of the protein were caused by attack of H(*) atoms and (*)OH radicals. In particular, Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and amino acidic residues that are preferential sites of the radical attack (i.e., tyrosine and methionine). After partial structural changes by the initial radical attack, the internal sulfur-containing amino acid residues were rendered susceptible to transformation. By using the biomimetic model of dioleoyl phosphatidyl choline vesicle suspensions containing RNase A, the damage to methione residues could be connected to a parallel alteration of membrane unsaturated lipids. In fact, thiyl radical species formed from protein degradation can diffuse into the lipid bilayer and cause isomerization of the naturally occurring cis double bonds. As a consequence, trans unsaturated fatty acids are formed in vesicles and can be considered to be markers of this protein damage.  相似文献   
40.
Two 2[5H]-furanones, in association with medium-chain fatty acids, were released in whey by Lactobacillus helveticus exposed to oxidative and heat stresses. This species plays an important role in cheese technology, particularly for Swiss-type cheeses and Grana cheese. Moreover, it significantly contributes to cheese ripening by means of an early autolysis and the release of enzymes during processing. Experimental evidence of the involvement of the two 2[5H]-furanones, detected by a gas chromatography-mass spectrometry/solid-phase microextraction technique, in the autolysis phenomenon has been obtained. Zymograms performed by using renaturing sodium dodecyl sulfate-polyacrylamide gels were used to detect the bioactivity of the supernatants containing the two furanones on fresh cells of the same strain. In addition to bands corresponding to known autolysins, new autolysins were detected concomitant with the exposure of Lactobacillus helveticus to the supernatants, which can be regarded as conditioned media (CM), and to a commercial furanone, 5-ethyl-3-hydroxy-4-methyl-2[5H]-furanone (HEMFi), having spectral data similar to those of the newly described 2[5H]-furanones. Morphological changes were observed when fresh cells were exposed to CM containing the two 2[5H]-furanones and HEMFi. The two furanones produced by Lactobacillus helveticus, which met a number of criteria to be included in cell-cell signaling molecules, have a presumptive molecular mass lower than those of already known 3[2H]-furanones having an autolytic activity and being produced by gram-negative bacteria. Moreover, they present a different chemical structure with respect to the furanones already identified as products of Lactococcus lactis subsp. cremoris or to those identified in some cheeses with Lactobacillus helveticus as a starter culture.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号