首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110587篇
  免费   8461篇
  国内免费   6920篇
  125968篇
  2024年   215篇
  2023年   1451篇
  2022年   3239篇
  2021年   5476篇
  2020年   3579篇
  2019年   4374篇
  2018年   4353篇
  2017年   3229篇
  2016年   4599篇
  2015年   6677篇
  2014年   7863篇
  2013年   8316篇
  2012年   9960篇
  2011年   8868篇
  2010年   5445篇
  2009年   4750篇
  2008年   5586篇
  2007年   4926篇
  2006年   4371篇
  2005年   3333篇
  2004年   2934篇
  2003年   2531篇
  2002年   2205篇
  2001年   2001篇
  2000年   1860篇
  1999年   1841篇
  1998年   1017篇
  1997年   1137篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   114篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
The left-handed Z-DNA structure of an araC-containing (where araC stands for arabinosylcytosine) hexamer, (araC-dG)3, has been solved by x-ray diffraction analysis at 1.3 A resolution. This hexamer was crystallized in the hexagonal P6(5)22 (a = b = 17.96 A, c = 43.22 A) space group in which the hexamers have statistically disordered packing arrangement along the 6(5) screw axis, yet the crystals diffract x-rays to high resolution. Its structure has been refined by the constrained least square refinement to a final R factor of 0.287 using 737 [> 3.0 sigma(F)] observed reflections. The asymmetric unit of the unit cell contains only a dinucleotide, 5'-p (araC)p(dG). The overall conformation resembles that of the canonical Z-DNA, but with some differences in details. The O2' hydroxyl groups of the araC residues form intramolecular hydrogen bonds with N2 of the 5'-guanine residues. In the deep groove of Z-DNA, these hydroxy groups replace the bridging water molecules that stabilize the guanine in the syn conformation. The results reinforce the earlier observation made by the structural analysis of another hexamer, d(CG[araC]GCG), with a mono-substitution of araC [M.-K. Teng, Y.-C. Liaw, G. A. van der Marel, J. H. van Boom, and A. H.-J. Wang (1989) Biochemistry, vol. 28, pp. 4923-4928]. These two structures show that araC residue can be incorporated readily into the Z structure and probably facilitates the B to Z transition, as supported by uv absorption spectroscopic studies in a number of araC-containing oligonucleotides. The potential biological roles of the araC-modified Z-DNA are discussed.  相似文献   
952.
The use of coimmobilized systems for treatment of toxic organic compounds has been proposed. The proposed approach combines the use of adsorbents and laboratory identified microorganisms immobilized in a protective permeable barrier to achieve a greater degree of control over the remediation process. This study was launched to understand the effect of adsorbents and changes in adsorption on the degradation of toxic compounds by coimmobilized systems. The specific case studied involved the degradation of pentachlorophenol (PCP) by Arthrobacter (ATCC 33790) coimmobilized with powdered activated carbon within calcium alginate capsules.The design parameters studied included adsorbent content and type as well as the effect of solution pH and surfactant concentration on adsorption and biodegradation. It was found that the equilibrium adsorption behavior of PCP was strongly influenced by solution pH and surfactant concentration. A mathematical model was developed that combined the physical processes of mass transfer and adsorption with biological degradation of PCP. The model was used to predict the effect of various parameters on the degradation of PCP. Based on model predictions, the degradation of PCP. Based on model predictions, the degradation of PCP was strongly dependent on variations in adsorbent capacity and affinity for this contaminant.  相似文献   
953.
This article compares backpropagation neural networks (BNN) with partial least squares (PLS) techniques in terms of their ability to deconvolute fluorescence spectra. Both actual experimental and simulated spectral data are studied for 2 binary systems. These systems consist of mixtures of tryptophan and tyrosine, and NADH and tryptophan over a total concentration range of 10(-7) to 10(-4) M. It is shown that BNN is superior to PLS for both systems.  相似文献   
954.
Mean arterial pressure (mmHg (1 mmHg = 133.322 Pa)), sodium excretion rate (mumol.kg-1.min-1), and urine flow (microL.kg-1.min-1) were measured in conscious unrestrained spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) before, during, and after a 3-h intravenous infusion of arginine vasopressin (20 ng.kg-1.min-1), an equipressor dose of phenylephrine, or an infusion of the vehicle. Cessation of the phenylephrine infusion was associated with a return of arterial pressure to preinfusion control values in both SHR and WKY. Cessation of the vasopressin infusion was also associated with a return of arterial pressure to preinfusion values in WKY. In contrast, in the SHR, arterial pressure fell from a preinfusion control level of 164 +/- 6.2 to 137 +/- 4 mmHg within 1 h of stopping the vasopressin infusion. Five hours after stopping the infusion, pressure was 134 +/- 3 mmHg (29 +/- 5 mmHg below preinfusion levels). Similar to the WKY, cessation of a vasopressin infusion was associated with a return of arterial pressure to preinfusion values in Sprague-Dawley rats. Thus, the failure to observe a hypotensive response in normotensive rats was not a peculiarity of the WKY strain. Sodium excretion rates increased during the infusions of vasopressin to a greater extent in SHR than in WKY. However, the natriuresis induced by phenylephrine was not significantly different from that generated by vasopressin in SHR, and in WKY, the natriuresis was greater for phenylephrine than for vasopressin. Urine output increased to a greater extent during the infusions of phenylephrine in both SHR and WKY than during vasopressin infusion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
955.
We have characterized the effects of p53 on several biochemical activities of simian virus 40 (SV40) large tumor (T) antigen. While p53 induced a strong inhibition of the T antigen DNA helicase activity, surprisingly, its RNA helicase activity was stimulated. This supports the liklihood that the DNA and RNA helicase activities of T antigen reflect discrete functions. p53 did not significantly affect the ATP-dependent conversion of T antigen monomers to hexamers. However, the ability of these hexamers to assemble on a DNA fragment containing the viral origin was impaired by p53. Thus, these results suggest that p53 inhibits the function but not the formation of T antigen multimers. This conclusion was further supported by the observation that the addition of a purified p53:T antigen complex was as inhihitory as free p53 to the DNA helicase activity of free T antigen. Thus our data indicates that the targets of p53 inhibition are the functional units of T antigen, namely the hexamers.  相似文献   
956.
Phosphatidylinositol-specific phospholipase C (PtdIns-PLC) of Bacillus cereus catalyzes the conversion of PtdIns to inositol cyclic 1:2-phosphate and diacylglycerol. NIH 3T3, Swiss mouse 3T3, CV-1, and Cos-7 cells were transfected with a cDNA encoding this enzyme, and the metabolic and cellular consequences were investigated. Overexpression of PtdIns-PLC enzyme activity was associated with elevated levels of inositol cyclic 1:2-phosphate (2.5-70-fold), inositol 1-phosphate (2-20-fold), and inositol 2-phosphate (3-20-fold). The increases correlated with the levels of enzyme expression obtained in each cell type. The turnover of phosphatidylinositol (PtdIns) was also increased in transfected CV-1 cells by 13-fold 20 h after transfection. The levels of PtdIns, phosphatidic acid, diacylglycerol, or other inositol phosphates were not detectably altered. Expression of bacterial PtdIns-PLC decreased rapidly after 20 h implying that either the increased PtdIns turnover or the accumulation of inositol phosphates was detrimental to cells and that by some adaptive mechanism enzyme expression was suppressed.  相似文献   
957.
When subjected to thiol reduction, purified intestinal mucins have been shown to undergo a decrease in molecular mass and to liberate a 118-kDa glycopeptide (Roberton, A. M., Mantle, M., Fahim, R. E. F., Specian, R., Bennick, A., Kawagishi, S., Sherman, P., and Forstner, J. F. (1989) Biochem. J. 261, 637-647). The latter has been called a putative "link" component because it is assumed to be important for disulfide bond-mediated mucin polymerization. Controversy exists as to whether the putative link is an integral mucin component or a separate mucin-associated glycopeptide. In the present study both NH2-terminal and internal amino acid sequences of the 118-kDa glycopeptide of rat intestinal mucin were used to generate opposing oligonucleotide primers for polymerase chain reaction. A specific 1.2-kilobase (kb) product was obtained, from which a 0.5-kb HindIII fragment was used as a probe to screen a lambda ZAP II cDNA library of rat intestine. A 2.6-kb cDNA (designated MLP 2677) was sequenced and revealed an open reading frame of 2.5 kb encoding 837 amino acids. The deduced amino acid sequence showed that the putative link peptide is equivalent to the carboxyl-terminal 689 amino acids of a larger peptide. Northern blots revealed a mRNA size of approximately 9 kb. Computer searches revealed no sequence homology with other proteins, but similarities were seen in the alignment of cysteine residues in the link and in several domains of human von Willebrand factor, as well as cysteine-rich areas of bovine and porcine submaxillary mucins and a frog skin mucin designated FIM-B.1. In keeping with earlier demonstrations of the presence of mannose in the 118-kDa glycopeptide, there were several (13) consensus sequences for attachment of N-linked oligosaccharides within the link domain. Further sequencing of MLP 2677 in a direction 5' to the codon specifying the NH2-terminal proline of the link has revealed a coding region for 148 amino acids, including a unique 75-amino acid domain rich in cysteine and proline, and a region containing 4.5-variable tandem repeats (each 11-12 amino acids) rich in serine, threonine, and proline. The presence of mucin-like tandem repeats suggests that the entire cysteine-rich link peptide represents the carboxyl-terminal region (75.5 kDa) of a mucin-like peptide (MLP). The latter is estimated to have a molecular mass of approximately 300 kDa.  相似文献   
958.
959.
The roles of tyrosine 9 and aspartic acid 101 in the catalytic mechanism of rat glutathione S-transferase YaYa were studied by site-directed mutagenesis. Replacement of tyrosine 9 with phenylalanine (Y9F), threonine (Y9T), histidine (Y9H), or valine (Y9V) resulted in mutant enzymes with less than 5% catalytic activity of the wild type enzymes. Kinetic studies with purified Y9F and Y9T mutants demonstrated poor catalytic efficiencies which were largely due to a drastic decrease in kcat. The estimated pK alpha values of the sulfhydryl group of glutathione bound to Y9F and Y9T mutant enzymes were 8.5 to 8.7, similar to the chemical reaction, in contrast to the estimated pK alpha value of 6.7 to 6.8 for the glutathione enzyme complex of wild type glutathione S-transferase. These results indicate that tyrosine 9 is directly responsible for the lowering of the pKa of the sulfhydryl group of glutathione, presumably due to the stabilization of the thiolate anion through hydrogen bonding with the hydroxyl group of tyrosine. To examine the role of aspartic acid in the binding of glutathione to YaYa, 4 conserved aspartic acid residues at positions 61, 93, 101, and 157 were changed to glutamic acid and asparagine. All mutant enzymes retained either full or partial activity except D157N, which was virtually inactive. Kinetic studies with four mutant enzymes (D93E, D93N, D101E, and D101N) indicate that only D101N exhibited a 5-fold increase in Km toward glutathione. Also, the binding of this mutant to the affinity column was greatly reduced. These results demonstrate that aspartic acid 101 plays an important role in glutathione interaction to YaYa. The role of aspartic acid 157 in catalysis remains to be determined.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号