全文获取类型
收费全文 | 202篇 |
免费 | 7篇 |
专业分类
209篇 |
出版年
2021年 | 3篇 |
2020年 | 2篇 |
2016年 | 2篇 |
2015年 | 6篇 |
2014年 | 2篇 |
2013年 | 8篇 |
2012年 | 7篇 |
2011年 | 6篇 |
2010年 | 3篇 |
2008年 | 8篇 |
2007年 | 6篇 |
2006年 | 5篇 |
2005年 | 6篇 |
2004年 | 2篇 |
2003年 | 4篇 |
2002年 | 3篇 |
2001年 | 5篇 |
2000年 | 7篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 2篇 |
1992年 | 6篇 |
1991年 | 6篇 |
1990年 | 6篇 |
1989年 | 9篇 |
1988年 | 6篇 |
1987年 | 3篇 |
1986年 | 4篇 |
1985年 | 8篇 |
1984年 | 6篇 |
1983年 | 7篇 |
1982年 | 4篇 |
1981年 | 1篇 |
1980年 | 4篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1977年 | 5篇 |
1976年 | 4篇 |
1975年 | 5篇 |
1974年 | 4篇 |
1973年 | 2篇 |
1972年 | 1篇 |
1971年 | 1篇 |
1970年 | 1篇 |
1969年 | 2篇 |
1968年 | 1篇 |
1967年 | 2篇 |
排序方式: 共有209条查询结果,搜索用时 15 毫秒
191.
L de Meis 《The Journal of biological chemistry》1976,251(7):2055-2062
The role of the Ca2+ concentration gradient in ATP synthesis and membrane phosphorylation by Pi was investigated in sarcoplasmic reticulum vesicles isolated from rabbit skeletal muscle. The Pi concentration required to attain 50% of the maximal membrane phosphorylation varies significantly in the pH range of 5.5 to 4.5, the optimal being at pH 6.0. In the pH range of 6.0 to 7.0, this concentration of Pi was 4- to 10-fold higher in empty vesicles than in vesicles loaded with calcium phosphate, i.e. having transmembrane Ca2+ concentration gradient. ATP, ADP, and Ca2+ inhibit the membrane phosphorylation by Pi, the inhibition being greater at pH 7.0 than at pH 6.0. The pH profile for ATP synthesis shows a higher optimum than for membrane phosphorylation. The optimum pH for synthesis, but not for phosphorylation depends on whether the vesicles were previously loaded with calcium phosphate or with calcium oxalate. Addition of Ca2+ to the assay medium inhibits the extent of membrane phosphorylation and the rate of ATP synthesis to different extents. Evidence is presented that the rate of membrane phosphorylation by Pi is higher than the rate by which the phosphoprotein transfers its pohsphate to ADP for the ATP synthesis. 相似文献
192.
193.
The mechanisms underlying spontaneous burst activity (SBA), appearing in networks of embryonic cortical neurons at the end of the first week in vitro, remain elusive. Here we investigated the contribution of the hyperpolarization-activated cation current (I(h)) to SBA in cortical cultures of GAD67-GFP mice. I(h) current could be detected in GFP-positive large GABAergic interneurons (L-INs) and glutamatergic principal neurons (PNs) as early as DIV 5. Under current-clamp conditions, blockers of I(h) current, ZD7288 and Cs?, abolished the voltage sag and rebound depolarization. ZD7288 induced a hyperpolarization concomitant with an increase in the membrane input resistance in L-INs and PNs. Voltage-clamp recordings revealed I(h) as slowly activating inward current with a reversal potential close to -50 mV and a mid-activation point around -90 mV. Both, ZD7288 (1-10 μM) and Cs? (1-2 mM) reduced SBA, spontaneous activity-driven Ca2? transients, and frequency as well as amplitude of miniature GABAergic postsynaptic currents. Immunocytochemistry and Western blot demonstrated that HCN1 and HCN2 were the prevalent isoforms of HCN channels expressed in L-INs and PNs. These results suggest an important contribution of HCN channels to the maintenance of SBA in embryonic cortical cultures. 相似文献
194.
Y Sagara F Fernandez-Belda L de Meis G Inesi 《The Journal of biological chemistry》1992,267(18):12606-12613
The effects of thapsigargin (TG), a specific inhibitor of intracellular Ca(2+)-ATPases, were studied on vesicular fragments of sarcoplasmic reticulum (SR) membranes. Inhibition of Ca2+ transport and ATPase activity was observed following stoichiometric titration of the membrane bound enzyme with TG. When Ca2+ binding to the enzyme was measured in the absence of ATP, or when one cycle of Ca(2+)-dependent enzyme phosphorylation by ATP was measured under conditions preventing turnover, protection against TG by Ca2+ was observed. The protection by Ca2+ disappeared if the phosphoenzyme was allowed to undergo turnover, indicating that a state reactive to TG is produced during enzyme turnover, whereby a dead end complex with TG is formed. Enzyme phosphorylation with Pi, ATP synthesis, and Ca2+ efflux by the ATPase in its reverse cycling were also inhibited by TG. However, under selected conditions (millimolar Ca2+ in the lumen of the vesicles, and 20% dimethyl sulfoxide in the medium) TG permitted very low rates of enzyme phosphorylation with Pi and ATP synthesis in the presence of ADP. It is concluded that the mechanism of ATPase inhibition by TG involves mutual exclusion of TG and high affinity binding of external Ca2+, as well as strong (but not total) inhibition of other partial reactions of the ATPase cycle. TG reacts selectively with the state acquired by the ATPase in the absence of Ca2+. This state is obtained either by enzyme exposure to EGTA, or by utilization of ATP and consequent displacement of bound Ca2+ during catalytic turnover. 相似文献
195.
196.
197.
198.
199.
Van Den Berg F. M. Van Amstel P. J. Janse C. J. Meis J. F. G. M. Mons B. 《Journal of molecular histology》1991,23(3):109-115
Journal of Molecular Histology - A highly sensitive non-radioactive DNAin situ hybridization procedure is described that enables detection and unequivocal identification of various developmental... 相似文献
200.
In this report it is shown that organic solvents mimic the stimulatory effects of calmodulin and acidic phospholipids on the erythrocyte plasma membrane Ca2+-ATPase. The solvents used were dimethyl sulfoxide (20%, v/v), glycerol (20% v/v), ethylene glycol (20%, v/v) and polyethylene glycol (Mr 6000-8000) (10%, w/v). These solvents increased both the affinity for Ca2+ and the turnover number of the enzyme. The increase in Ca2+ affinity is additive to that achieved with calmodulin. The calcium cooperativity observed in the presence of calmodulin disappears after the addition of dimethyl sulfoxide to the medium. The present data support the proposal that activation of the erythrocyte plasma membrane Ca2+-ATPase is promoted by hydrophobic interactions along the enzyme molecule. 相似文献