首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   264篇
  免费   26篇
  2021年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   4篇
  2015年   11篇
  2014年   8篇
  2013年   8篇
  2012年   13篇
  2011年   18篇
  2010年   7篇
  2009年   10篇
  2008年   15篇
  2007年   18篇
  2006年   15篇
  2005年   10篇
  2004年   7篇
  2003年   14篇
  2002年   8篇
  2001年   13篇
  2000年   10篇
  1999年   10篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   1篇
  1990年   4篇
  1989年   11篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   2篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有290条查询结果,搜索用时 31 毫秒
71.
Strains of the yeast Pichia inositovora that carry the linear plasmids pPin1-1 (18 kb) and pPin1-3 (10 kb) display a killer activity towards Saccharomyces cerevisiae. Cloning and sequencing of the smaller plasmid, pPin1-3, revealed that it is 9683 bp long and has 154-bp terminal inverted repeats. Comparison of pPin1-3 with the only other completely sequenced killer plasmid, pGKL1 of Kluyveromyces lactis, revealed differences in genome organization. The Pichia element has four ORFs that account for 95% of the sequence. ORF1 is homologous to the putative immunity gene of the K. lactis system. A viral B-type DNA polymerase is encoded by ORF2. The predicted product of ORF3 displays similarities to the - and -subunits of the heterotrimeric K. lactis killer toxin, also known as zymocin. A cysteine-rich chitin-binding site and a chitinase signature, characteristic for the -subunit of zymocin were identified in Orf3p. Chitin affinity chromatography and Western analysis confirmed the plasmid specific expression and secretion of a protein that cross-reacts with an antibody raised against the -subunit of K. lactis zymocin. Disruption of the major chitin synthase-gene ( CHS3) renders S. cerevisiae resistant to the toxin, providing further evidence that chitin is the cellular receptor for the P. inositovora toxin. Orf4p of pPin1-3 displays only weak similarities to the -subunit of zymocin, which causes a G1 cell-cycle arrest in S. cerevisiae. However, disruption of the S. cerevisiae gene ELP3/TOT3, which encodes a histone-acetyltransferase that is essential for zymocin action, resulted in reduced sensitivity to the P. inositovora toxin also. Thus, despite obvious differences in genome organization and protein architecture, both killer systems very probably have similar modes of action.Communicated by C. P. Hollenberg  相似文献   
72.
Stable patterns can be generated by molecular interactions involving local self-enhancement and long-range inhibition. In contrast, highly dynamic patterns result if the maxima, generated in this way, become destabilized by a second antagonistic reaction. The latter must act local and must be long-lasting. Maxima either disappear and reappear at displaced positions or they move over the field as travelling waves. The wave can have unusual properties in that they can penetrate each other without annihilation. The resulting pattern corresponds to those observed in diverse biological systems. In the chemotactic orientation of cells, the temporary signals allow the localized extensions of protrusions under control of minute external asymmetries imposed by the chemoattractant. In phyllotaxis, these signals lead to successive leaf initiation, whereby the longer-lasting extinguishing reaction can cause a displacement of the subsequent leaf initiation site by the typical 137.5 degrees, the golden angle. On seashells, this patterns leads either to oblique lines that can cross each other or to oblique rows of dots. For some of the models animated simulations are available at http://www.eb.tuebingen.mpg.de/abt.4/meinhardt/theory.html.  相似文献   
73.
Over 200 genes have been shown to be associated with infertility in mouse models. However, knockout mice reveal unexpected functional redundancy of some germ cell expressed genes. Single null mutations in mouse genes encoding four male germ cell proteins, transition protein 2 (Tnp2), proacrosin (Acr), histone H1.1 (H1.1), histone H1t (H1t) and sperm mitochondria-associated cysteine-rich protein (Smcp) have been generated and analysed. Tnp2 is believed to participate in the removal of the nuclear histones and initial condensation of the spermatid nucleus. Proacrosin is an acrosomal protease synthesized as a proenzyme and activated into acrosin during the acrosome reaction. The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues as well as in germ cells during the S-phase of the cell cycle. The histone gene Hist1h1t is expressed exclusively in spermatocytes and may have a function in establishing an open chromatin structure for the replacement of histones by transition proteins and protamines. Sperm mitochondria-associated cysteine-rich protein (Smcp) is a major structural element of the mitochondria in the midpiece of the sperm tail. Male mutant mice lacking any of these proteins show no apparent defects in spermatogenesis or fertility. To examine the synergistic effects of these proteins in spermatogenesis and during fertilization four lines of double knockout mice Hist1h1a/Mcsp, Hist1h1t/Mcsp, Tnp2/Mcsp and Acr/Mcsp were established. It was found that even when knockout mice are heterozygous for one allele (-/+) and homozygous for the other allele (-/-), mice were subfertile. Homozygous double knockout mice of all four lines are nearly infertile. However, in the four homozygous double knockout mouse lines, different characteristic abnormalities are prominently manifested: In Hist1h1a-/-/Mcsp-/- the migration of spermatozoa is disturbed in female genital tract, in Hist1h1t-/-/Mcsp-/- spermatozoa show morphological head abnormalities, in Tnp2-/-/Mcsp-/- the motility of sperm is affected, and in Acr-/-/Mcsp-/- the sperm-oocyte interaction is impaired. These findings indicate strongly that male germ cell expressed genes have synergistic effects on male fertility.  相似文献   
74.
Pichia etchellsii CBS2011 (synonym Debaryomyces etchellsii) is a non-killer yeast harbouring two cryptic linear cytoplasmic DNA-elements, pPE1A (6.7 kb) and pPE1B (12.8 kb). Cloning and complete sequencing of pPE1A revealed a 6749-bp element with a remarkably high A+T content of 77.6%. The termini of pPE1A were found to consist of inversely orientated identical nucleotide repetitions of 178bp, to which proteins are linked at the 5'-ends. It is only the second small, non-autonomous cytoplasmic yeast linear plasmid for which the complete nucleotide sequence is known. Five open reading frames (ORFs) were identified preceded by upstream conserved sequence motifs (UCS) characteristic for cytoplasmic promoters and perfectly matching the UCS consensus (ATNTGA). As none of the putative genes encodes a DNA-polymerase, pPE1A is the first yeast linear plasmid known that does not possess its own element-specific replication machinery. No function could be attributed to ORF1, 3, 4, and 5; the predicted ORF2 gene product is similar to chitin-binding proteins and chitinases, highest homologies were found to the precursor of the alpha- and beta-subunits of the secreted Kluyveromyces lactis zymocin. Consistently, the Orf2p could be isolated from the culture fluid by chitin-Sepharose affinity chromatography and characterized by immuno-probing with an antibody specific for the K. lactis killer toxin alpha-subunit. Production of the protein was found to be plasmid-dependent. The sequence of pPE1A has been submitted to the EMBL data library, Accession No. AJ409097.  相似文献   
75.
The gene encoding cardiolipin synthase ( cls) from the phenol-degrading bacterium Pseudomonas putida P8, which rapidly adapts its membrane lipids to the presence of organic solvents by cis/trans isomerisation of unsaturated fatty acids, was isolated and completely sequenced. The functionality of the predicted gene product was proven by constructing a knock-out mutant that was significantly reduced in its growth rate both at elevated temperatures and in the presence of membrane-active solvents. Though the mutant showed a clear phenotype it was still able to synthesise trace amounts of cardiolipin. As an increase in cardiolipin (diphosphatidylglycerol) content is known to function as a long term membrane adaptation mechanism in pseudomonads, we tested whether the mutant compensates for the lack of the Cls by increased cis/trans isomerisation of unsaturated fatty acids. Increase in cis/trans isomerisation of unsaturated fatty acids was observed for the mutant at zero and low concentrations of 4-chlorophenol; however, cis/trans isomerisation is not able to fully compensate for the lack of cardiolipin production. Possibly, other long-term adaptation mechanisms are instrumental in compensating for the missing cardiolipin synthesis. As the cis/trans isomerase is activated similarly in the mutant and the wildtype, cis/trans isomerisation and cardiolipin production do not display mutual dependency.  相似文献   
76.
A fundamental problem of plant science is to understand the biochemical basis of plant/pathogen interactions. The foliar disease tan spot of wheat (Triticum aestivum), caused by Pyrenophora tritici-repentis, involves Ptr ToxA, a proteinaceous host-selective toxin that causes host cell death. The fungal gene ToxA encodes a 17.2-kD pre-pro-protein that is processed to produce the mature 13.2-kD toxin. Amino acids 140 to 142 of the pre-pro-protein form an arginyl-glycyl-aspartic (RGD) sequence, a motif involved in the binding of some animal proteins and pathogens to transmembrane receptor proteins called integrins. Integrin-like proteins have been identified in plants recently, but their role in plant biology is unclear. Our model for Ptr ToxA action predicts that toxin interacts with a putative host receptor through the RGD motif. Mutant clones of a ToxA cDNA, created by polymerase chain reaction such that the RGD in the pro-toxin was changed to arginyl-alanyl-aspartic or to arginyl-glycyl-glutamic, were expressed in Escherichia coli. Extracts containing mutated forms of toxin failed to cause host cell death, but extracts from E. coli expressing both a wild-type pro-protein cDNA and a control mutation away from RGD were active in cell death development. In competition experiments, 2 mM RGD tripeptide reduced the level of electrolyte leakage from wheat leaves by 63% when co-infiltrated with purified Ptr ToxA (15 microg mL(-1)) obtained from the fungus, but the control peptide arginyl-glycyl-glutamyl-serine provided no protection. These experiments indicate that the RGD motif of Ptr ToxA is involved with toxin action, possibly by interacting with a putative integrin-like receptor in the host.  相似文献   
77.
ORF3 of the cytoplasmic linear plasmid pGKL2 was disruptedin vivoby integration of a selectable marker. Long-term cultivation of transformants carrying hybrid plasmids with a disrupted ORF3 under selective pressure did not deprive strains of the native counterpart, thereby proving its essentiality for pGKL2 replication and maintenance. The predicted ORF3 polypeptide was found to contain conserved motifs acquainted with mRNA-capping enzymes in the required order, just as in cytoplasmic viruses; new conserved motifs were also identified.  相似文献   
78.
The capacity of two maize opaque endosperm mutants (o1 and o2) and two floury (fl1 and fl2) to accumulate lysine in the seed in relation to their wild type counterparts Oh43+ was examined. The highest total lysine content was 3.78% in the o2 mutant and the lowest 1.87% in fl1, as compared with the wild type (1.49%). For soluble lysine, o2 exhibited over a 700% increase, whilst for fl3 a 28% decrease was encountered, as compared with the wild type. In order to understand the mechanisms causing these large variations in both total and soluble lysine content, a quantitative and qualitative study of the N constituents of the endosperm has been carried out and data obtained for the total protein, nonprotein N, soluble amino acids, albumins/globulins, zeins and glutelins present in the seed of the mutants. Following two-dimensional PAGE separation, a total of 35 different forms of zein polypeptides were detected and considerable differences were noted between the five different lines. In addition, two enzymes of the aspartate biosynthetic pathway, aspartate kinase and homoserine dehydrogenase were analyzed with respect to feedback inhibition by lysine and threonine. The activities of the enzymes lysine 2-oxoglutate reductase and saccharopine dehydrogenase, both involved in lysine degradation in the maize endosperm were also determined and shown to be reduced several fold with the introduction of the o2, fl1 and fl2 mutations in the Oh43+ inbred line, whereas wild-type activity levels were verified in the Oh43o1 mutant.  相似文献   
79.
The wheat tan spot fungus (Pyrenophora tritici-repentis) produces a well-characterized host-selective toxin (HST) known as Ptr ToxA, which induces necrosis in genotypes that harbor the Tsn1 gene on chromosome 5B. In previous work, we showed that the Stagonospora nodorum isolate Sn2000 produces at least 2 HSTs (SnTox1 and SnToxA). Sensitivity to SnTox1 is governed by the Snn1 gene on chromosome 1B in wheat. SnToxA is encoded by a gene with a high degree of similarity to the Ptr ToxA gene. Here, we evaluate toxin sensitivity and resistance to S. nodorum blotch (SNB) caused by Sn2000 in a recombinant inbred population that does not segregate for Snn1. Sensitivity to the Sn2000 toxin preparation cosegregated with sensitivity to Ptr ToxA at the Tsn1 locus. Tsn1-disrupted mutants were insensitive to both Ptr ToxA and SnToxA, suggesting that the 2 toxins are functionally similar, because they recognize the same locus in the host to induce necrosis. The locus harboring the tsn1 allele underlies a major quantitative trait locus (QTL) for resistance to SNB caused by Sn2000, and explains 62% of the phenotypic variation, indicating that the toxin is an important virulence factor for this fungus. The Tsn1 locus and several minor QTLs together explained 77% of the phenotypic variation. Therefore, the Tsn1-ToxA interaction in the wheat-S. nodorum pathosystem parallels that of the wheat-tan spot system, and the wheat Tsn1 gene serves as a major determinant for susceptibility to both SNB and tan spot.  相似文献   
80.
DNA sequence variation in a 1.1-kb region including the coding portion of the Tpi locus was examined in 25 homozygous third-chromosome lines of Drosophila melanogaster, nine lines of Drosophila simulans, and one line of Drosophila yakuba. Our data show that the widespread allozyme polymorphism observed in cosmopolitan D. melanogaster is due to a glutamic acid substitution occurring in a phylogenetically conserved lysine that has been identified as part of the "hinged-lid" active site of the enzyme. This observation suggests that the replacement polymorphism may have important functional consequences. One replacement polymorphism was also observed in D. simulans, although its functional relevance is more difficult to assess, since it affects a site that is not strongly conserved. This amino acid change in D. simulans is associated with a single lineage possessing seven unique silent substitutions, which may be indicative of balancing selection or population subdivision. The absence of fixed amino acid differences between D. melanogaster and D. simulans and only a single difference with D. yakuba suggests that triose phosphate isomerase is under strong functional constraint. Silent variation is slightly higher for D. melanogaster than for D. simulans. Finally, we outline the general lack of evidence for old balanced polymorphisms at allozyme loci in D. melanogaster.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号