首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   512篇
  免费   41篇
  553篇
  2021年   5篇
  2019年   3篇
  2018年   7篇
  2017年   5篇
  2016年   9篇
  2015年   14篇
  2014年   17篇
  2013年   16篇
  2012年   25篇
  2011年   33篇
  2010年   15篇
  2009年   24篇
  2008年   34篇
  2007年   37篇
  2006年   34篇
  2005年   25篇
  2004年   17篇
  2003年   26篇
  2002年   23篇
  2001年   13篇
  2000年   12篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   10篇
  1995年   9篇
  1994年   10篇
  1993年   9篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   15篇
  1987年   4篇
  1986年   2篇
  1985年   6篇
  1984年   5篇
  1983年   4篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1978年   6篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
  1970年   1篇
  1969年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有553条查询结果,搜索用时 15 毫秒
11.
Liver and intestinal cytosol contain abundant levels of long chain fatty acyl-CoA binding proteins such as liver fatty acid binding protein (L-FABP) and acyl-CoA binding protein (ACBP). However, the relative function and specificity of these proteins in microsomal utilization of long chain fatty acyl-CoAs (LCFA-CoAs) for sequential transacylation of glycerol-3-phosphate to form phosphatidic acid is not known. The results showed for the first time that L-FABP and ACBP both stimulated microsomal incorporation of the monounsaturated oleoyl-CoA and polyunsaturated arachidonoyl-CoA 8–10-fold and 2–3-fold, respectively. In contrast, these proteins inhibited microsomal utilization of the saturated palmitoyl-CoA by 69% and 62%, respectively. These similar effects of L-FABP and ACBP on microsomal phosphatidic acid biosynthesis were mediated primarily through the activity of glycerol-3-phosphate acyltransferase (GPAT), the rate limiting step, rather than by protecting the long chain acyl-CoAs from microsomal hydrolase activity. In fact, ACBP but not L-FABP protected long chain fatty acyl-CoAs from microsomal acyl-CoA hydrolase activity in the order: palmitoyl-CoA>oleoyl-CoA>arachidonoyl-CoA. In summary, the data established for the first time a role for both L-FABP and ACBP in microsomal phosphatidic acid biosynthesis. By preferentially stimulating microsomal transacylation of unsaturated long chain fatty acyl-CoAs while concomitantly exerting their differential protection from microsomal acyl-CoA hydrolase, L-FABP and ACBP can uniquely function in modulating the pattern of fatty acids esterified to phosphatidic acid, the de novo precursor of phospholipids and triacylglycerols. This may explain in part the simultaneous presence of these proteins in cell types involved in fatty acid absorption and lipoprotein secretion.  相似文献   
12.
Formation of gas and of methylated sulfur compounds was observed in anaerobic enrichment cultures with methoxylated aromatic compounds as substrates. Via direct dilution of mud samples in defined reduced media supplemented with trimethoxybenzoate or syringate two new strains of anaerobic homoacetogenic bacteria (strain TMBS4 and strain SA2) were obtained in pure culture. Both strains produced dimethylsulfide and methanethiol during growth on methoxylated aromatic compounds. Growth tests and determination of stoichiometries demonstrated that the volatile sulfur compounds were formed from the methyl group at the aromatic ring and the sulfide added as reducing agent to the medium (R = aromatic residue): 2 R - O - CH3 + H2 S 2 R - OH + (CH3)2SDimethylsulfide was the major organic sulfur compound formed, whereas methanethiol appeared only as intermediate in small quantities. The isolates grew also with trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol without formation of methylated sulfur compounds. The aromatic compounds were degraded to acetate. The freshwater strain TMBS4 also fermented pyruvate. Other aliphatic or aromatic compounds were not utilized. External electron acceptors (sulfate, nitrate, fumarate) were not reduced. Both strains were mesophilic and formed rod-shaped, non-motile, Gram-negative cells. Spore formation was not observed. Tentatively, both isolates can be affiliated to the genus Pelobacter.Abbreviations TMB 3,4,5-trimethoxybenzoate - MT methanethiol - DMS dimethylsulfide  相似文献   
13.
Two related forms of the respiratory-chain complex, NADH: ubiquinone oxidoreductase (Complex I) are synthesized in the mitochondria of Neurospora crassa. Normally growing cells make a large, piericidin-A-sensitive form, which consists of some 23 different nuclear- and 6-7 mitochondrially encoded subunits. Cells grown in the presence of chloramphenicol make a small, piericidin-A-insensitive form which consists of only approximately 13 nuclear-encoded subunits. The subunits of the small form are either identical or similar to nuclear-encoded subunits of the large form. The iron-sulfur clusters in these two forms of Complex I are characterized by redox potentiometry and EPR spectroscopy. The large form of Complex I contains four EPR-detectable iron-sulfur clusters, N1, N2, N3 and N4, with the spin concentration of the individual clusters equivalent to the flavin concentration, similar to the mammalian counterparts. The small Complex I contains clusters N1, N3 and N4, but it is devoid of cluster N2. A model of the electron-transfer route through the large form of Complex I has been derived from these findings and an evolutionary pathway which leads to the emergence of large Complex I is discussed.  相似文献   
14.
From the second-highest dilution in a most-probable-number dilution series with lactate and sulfate as substrates and rice paddy soil as the inoculum, a strain of Desulfovibrio desulfuricans was isolated. In addition to reducing sulfate, sulfite, and thiosulfate, the strain also reduced nitrate to ammonia. The latter process was studied in detail, since the ability to reduce nitrate was strongly influenced by the presence of sulfide. Sulfide inhibited both growth on nitrate and nitrate reduction. A 70% inhibition of the nitrate reduction rate was obtained at 127 μM sulfide, and growth was inhibited by 50% at approximately 320 μM sulfide and was not detectable above 700 μM sulfide. In contrast, sulfate reduction was not affected at concentrations of up to 5 mM. After growth with sulfate, an induction period of 2 to 4 days was needed before nitrate reduction started. When nitrate and sulfate were present simultaneously, only sulfate was reduced, except when sulfate was present at very low concentrations (4 μM). At higher sulfate concentrations (500 μM), nitrate reduction was temporarily halted. The affinity for nitrate uptake was extremely high (Km = 0.05 μM) compared with that for sulfate uptake (Km = 5 μM). Thus, at low nitrate concentrations this bacterium is favored relative to denitrifiers (Km = 1.8 to 13.7 μM) or other nitrate ammonifiers (e.g., Clostridium spp. [Km = 500 μM]).  相似文献   
15.
Relatively little is known of fatty acid specificity in cellular fatty acid uptake. In this study L-cells, a fibroblastic cell line with very low levels of endogenous cytosolic fatty acid binding protein, were used to examine the role of cis and trans unsaturation on fatty acid uptake. The fluorescent fatty acids, trans-parinaric acid and cis-parinaric acid, were used as analogs of straight-chain saturated, and kinked-chain unsaturated fatty acids, respectively, in order to evaluate the fatty acid specificity of the uptake system. Parinaric acid is poorly metabolizable; greater than 97% was unesterified while 3H-oleic acid was almost totally metabolized after 30 min uptake. Cis- and trans-parinaric acid uptake was saturable and dependent on the concentration of fatty acid. However, the initial rate and maximal amount of trans-parinaric acid taken up by the L-cells was greater than for cis-parinaric acid under the same conditions. The affinity of L-cell uptake for trans-parinaric acid (Km = 0.12 uM) was 35-fold higher than that for cis-parinaric acid (Km = 4.17 uM) . Based on competition studies with oleic and stearic acids, it was concluded that the cis- and trans-parinaric acid were taken up by the same L-cell fatty acid uptake system. The results suggest that the L-cell fatty acid uptake system has selectivity for straight chain rather than kinked chain unsaturated fatty acids.Abbreviations Cis-parinaric acid 9Z, 11E, 13E, 15Z-octatetraenoic acid - trans-parinaric acid 9E, I IE, 13E, 15E-octatetraenoic acid - EGTA ethylene glycol-bis(beta-amlno-ethyl ether) N,N,N,N-tetratacetic acid - BSA bovine serum albumin - PBS phosphate buffered saline  相似文献   
16.
17.
Activation of PKC with 5 nM 12-O-tetradecanoylphorbol-13-acetate (TPA) for 72 h in human U937 myeloid leukemia cells is associated with induction of adherence, followed by monocytic differentiation and G0/G1 cell cycle arrest. In this study, we demonstrate that in addition to these effects about 25% of U937 cells accumulated in an apoptotic subG1 phase after TPA treatment. The appearance of these apoptotic suspension cells was detectable throughout the time course of the culture and was independent of TPA concentrations between 0.5 and 500 nM. Experiments with cells synchronized by centrifugal elutriation revealed dominant susceptibility of G1-phase cells to TPA-mediated apoptosis. While adherent cells expressed differentiation markers including the integrin CD11c, this effect was less pronounced in the TPA-treated suspension fraction. Moreover, previous work has demonstrated cell cycle arrest in differentiating U937 cells. Accordingly, PKC activation by TPA treatment was associated with a significant expression of the cdk/cyclin inhibitor p21WAF/CIP/sdi-1 in the adherent population and subsequent G0/G1 cell cycle arrest. In contrast, suspension cells failed to induce significant levels of p21WAF/CIP/sdi-1 after TPA stimulation. Immunoblotting experiments demonstrated no difference in the expression of the pro-apoptotic factors Bax, Bad, and Bak in either control U937 and TPA-treated adherent or suspension cells, respectively. However, anti-apoptotic factors including Bcl-2, Bcl-xL, and Mcl-1 were significantly induced in the adherent population whereas no induction was detectable in the suspension cells. In this context, incubation with the caspase-3/caspase-7 specific tetrapeptide inhibitor DEVD prior to TPA treatment prevented an accumulation of cells in subG1, respectively, demonstrating an involvement of these caspases. Taken together, these data suggest that PKC activation can relay distinct signaling pathways such as induction of adherence coupled with monocytic differentiation and growth arrest, or induction of caspase-mediated apoptosis coupled with the failure to adhere and to differentiate.  相似文献   
18.
The identification of 114 integral membrane proteins from Halobacterium salinarum was achieved using liquid chromatography/tandem mass spectrometric (LC/MS/MS) techniques, representing 20% of the predicted alpha-helical transmembrane proteins of the genome. For this experiment, a membrane preparation with only minor contamination by soluble proteins was prepared. From this membrane preparation a number of peripheral membrane proteins were identified by the classical two dimensional gel electrophoresis (2-DE) approach, but identification of integral membrane proteins largely failed with only a very few being identified. By use of a fluorescently labeled membrane preparation, we document that this is caused by an irreversible precipitation of the membrane proteins upon isoelectric focusing (IEF). Attempts to overcome this problem by using alternative IEF methods and IEF strip solubilisation techniques were not successful, and we conclude that the classical 2-DE approach is not suited for the identification of integral membrane proteins. Computational analysis showed that the identification of integral membrane proteins is further complicated by the generation of tryptic peptides, which are unfavorable for matrix assisted laser desorption/ionization time of flight mass spectrometric peptide mass fingerprint analysis. Together with the result from the analysis of the cytosolic proteome (see preceding paper), we could identify 34% (943) of all gene products in H. salinarum which can be theoretically expressed. This is a cautious estimate as very stringent criteria were applied for identification. These results are available under www.halolex.mpg.de.  相似文献   
19.
OBJECTIVE: To investigate possible statistical correlations between metabolic data from preoperative proton magnetic resonance spectroscopy (1HMRS) and morphology of proliferating tumor cell nuclei in anaplastic gliomas and glioblastomas. STUDY DESIGN: Ki-67-positive tumor cell nuclei in paraffin sections of surgical specimens from 36 patients (7 anaplastic gliomas, World Health Organization grade 3; 29 glioblastomas, World Health Organization grade 4) were investigated by means of a digital image analysis system. Stringent inclusion criteria were formulated for all cases with respect to histologic quality and spectroscopic examination. As morphometric variables, nuclear area, shape variables (roundness factor, size-invariate Fourier amplitudes) and density of Ki-67-positive tumor cell nuclei per reference area were determined. RESULTS: Correlation analysis according to Spearman revealed a significant positive correlation between the total creatine (TCR) peak and nuclear area (P = .005). This correlation was also found within the glioblastoma group (P = .019). There was also a significant negative correlation of nuclear area with the ratio between choline and TCR in all cases (P = .014) and within the glioblastoma group (P = .046). No significant correlation of spectroscopic data was found with nuclear shape or density of Ki-67-positive tumor cell nuclei. CONCLUSION: The results demonstrate a correlation between spectroscopic data and morphology of proliferating tumor cell nuclei (nuclear size) in high grade gliomas. This study is part of a detailed investigation of the interrelationship between preoperative 1HMRS and quantitative histomorphology of gliomas.  相似文献   
20.
Aspartate kinase (AK, EC 2.7.2.4) and homoserine dehydrogenase (HSDH, EC 1.1.1.3) have been partially purified and characterised from immature sorghum seeds. Two peaks of AK activity were eluted by anion‐exchange chromatography [diethylaminoethyl (DEAE)‐Sephacel] with 183 and 262 mM KCl, and both activities were inhibited by lysine. Similarly, two peaks of HSDH activity were eluted with 145 and 183 mM KCl; the enzyme activity in the first peak in elution order was shown to be resistant to threonine inhibition, whereas the second was sensitive to threonine inhibition. However, following gel filtration chromatography (Sephacryl S‐200), one peak of AK activity co‐eluted with HSDH and both activities were sensitive to threonine inhibition, suggesting the presence of a bifunctional threonine‐sensitive AK–HSDH isoenzyme with a molecular mass estimated as 167 kDa. The activities of AK and HSDH were studied in the presence of lysine, threonine, methionine, valine, calcium, ethylene glycol bis(2‐aminoethylether)‐N,N,NN′‐tetraacetic acid, calmodulin, S‐adenosylmethionine (SAM), S‐2‐aminoethyl‐l ‐cysteine (AEC) and increasing concentrations of KCl. AK was shown to be inhibited by threonine and lysine, confirming the existence of two isoenzymes, one sensitive to threonine and the other sensitive to lysine, the latter being predominant in sorghum seeds. Methionine, SAM plus lysine and AEC also inhibited AK activity; however, increasing KCl concentrations and calcium did not produce any significant effect on AK activity, indicating that calcium does not play a role in AK regulation in sorghum seeds. HSDH also exhibited some inhibition by threonine, but the majority of the activity was not inhibited, thus indicating the existence of a threonine‐sensitive isoenzyme and a second predominant threonine‐insensitive isoenzyme. Valine and SAM plus threonine also inhibited HSDH; however, increasing concentrations of KCl and calcium had no inhibitory effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号