首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   388篇
  免费   36篇
  424篇
  2023年   7篇
  2022年   6篇
  2021年   16篇
  2020年   7篇
  2019年   7篇
  2018年   12篇
  2017年   11篇
  2016年   19篇
  2015年   16篇
  2014年   21篇
  2013年   32篇
  2012年   34篇
  2011年   35篇
  2010年   26篇
  2009年   18篇
  2008年   28篇
  2007年   25篇
  2006年   16篇
  2005年   22篇
  2004年   14篇
  2003年   11篇
  2002年   19篇
  2001年   7篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
排序方式: 共有424条查询结果,搜索用时 21 毫秒
91.
Triacylglycerols (TAGs), wax esters (WEs), and polyhydroxyalkanoates (PHAs) are the major hydrophobic compounds synthesized in bacteria and deposited as cytoplasmic inclusion bodies when cells are cultivated under imbalanced growth conditions. The intracellular occurrence of these compounds causes high costs for downstream processing. Alcanivorax species are able to produce extracellular lipids when the cells are cultivated on hexadecane or pyruvate as the sole carbon source. In this study, we developed a screening procedure to isolate lipid export-negative transposon-induced mutants of bacteria of the genus Alcanivorax for identification of genes required for lipid export by employing the dyes Nile red and Solvent Blue 38. Three transposon-induced mutants of A. jadensis and seven of A. borkumensis impaired in lipid secretion were isolated. All isolated mutants were still capable of synthesizing and accumulating these lipids intracellularly and exhibited no growth defect. In the A. jadensis mutants, the transposon insertions were mapped in genes annotated as encoding a putative DNA repair system specific for alkylated DNA (Aj17), a magnesium transporter (Aj7), and a transposase (Aj5). In the A. borkumensis mutants, the insertions were mapped in genes encoding different proteins involved in various transport processes, like genes encoding (i) a heavy metal resistance (CZCA2) in mutant ABO_6/39, (ii) a multidrug efflux (MATE efflux) protein in mutant ABO_25/21, (iii) an alginate lyase (AlgL) in mutants ABO_10/30 and ABO_19/48, (iv) a sodium-dicarboxylate symporter family protein (GltP) in mutant ABO_27/29, (v) an alginate transporter (AlgE) in mutant ABO_26/1, or (vi) a two-component system protein in mutant ABO_27/56. Site-directed MATE, algE, and algL gene disruption mutants, which were constructed in addition, were also unable to export neutral lipids and confirmed the phenotype of the transposon-induced mutants. The putative localization of the different gene products and their possible roles in lipid excretion are discussed. Beside this, the composition of the intra- and extracellular lipids in the wild types and mutants were analyzed in detail.Almost all prokaryotes synthesize lipophilic storage substances as an integral part of their metabolism under limited nitrogen or phosphorus conditions if there is an excess of a suitable carbon source at the same time. The accumulated storage lipids serve as energy and carbon sources during starvation periods, and they are mobilized again under conditions of carbon and energy deficiency. The majority of the members of many genera synthesize hydrophobic polymers, such as poly(3-hydroxybutyrate) (PHB) or other types of polyhydroxyalkanoates (PHAs), whereas the accumulation of triacylglycerols (TAGs; trioxoesters of glycerol and long-chain fatty acids [FAs]) or wax esters (WEs; oxoesters of primary long-chain fatty acids and primary long-chain fatty alcohols) occurs in fewer prokaryotes (66). TAG accumulation has been reported for species of the genera Streptomyces, Mycobacterium, Nocardia, Rhodococcus (4, 6, 65), and recently also Alcanivorax and other hydrocarbonoclastic marine bacteria (32). Accumulation of WEs has been frequently reported for species of the genus Acinetobacter (66) but also for marine bacteria, such as Marinobacter (50) and Alcanivorax (11, 32).In general, the accumulation of at least one type of these compounds occurs intracellularly under imbalanced growth conditions in almost all prokaryotes. The localization of neutral lipids in marine organisms is not restricted to the cell cytoplasm, as extracellular lipid deposition has been shown in studies with Alcaligenes sp. PHY9 and Pseudomonas nautica (24). The production of extracellular wax esters by Alcanivorax jadensis T9 growing on hexadecane was described a few years ago (11). Species of the genus Alcanivorax belong to an unusual group of marine hydrocarbon-degrading bacteria, which have been recognized and described over the past few years and were shown to play an important role in the biological removal of petroleum hydrocarbons from contaminated sites (69). Species of the genus Alcanivorax are, like some species of the genera Neptunomonas (27) and Marinobacter (23), marine hydrocarbon-degrading bacteria. Moreover, Alcanivorax and related bacteria constitute the group of obligate hydrocarbonoclastic marine bacteria (OHCB), which exhibit a narrow range of utilizable carbon sources (obligate hydrocarbon utilization), with only a few species being able to metabolize substrates other than hydrocarbons (69). Alcanivorax borkumensis SK2 became a model strain of OHCB, and its importance and pivotal role in hydrocarbon biodegradation have recently been emphasized (33). The predominance of A. borkumensis in early stages of petroleum degradation has also been reported in microcosm studies as well as for a field-scale experiment (26).From a biotechnological point of view, the production of extracellular lipids is important. Secretion of lipophilic products into the culture medium rather than its intracellular accumulation can significantly reduce the costs of product recovery. Another advantage is that the production of WEs and TAGs would not be directly limited by cell density or cell volume. Until now, the mechanism responsible for the export of lipids in bacteria of the genus Alcanivorax or other bacteria had not been known. In this study, we report on a screening procedure to select mutants defective in lipid export for identification of the gene(s) involved in the export mechanism. After transposon-induced mutagenesis we found different mutants which were not able to export TAGs (mutants of A. borkumensis) when the cells were cultivated in the presence of pyruvate as the sole carbon source. Mutants of A. jadensis defective in export of WEs and/or wax diesters (DE) were also identified. The possible influences of the gene products on the export mechanism in Alcanivorax species were analyzed and are discussed.  相似文献   
92.
Grouping is a widespread phenomenon in the animal kingdom and the decision to join a group is a function of individual and environmental conditions, meaning that any advantages and disadvantages have to be pondered constantly. Shoaling decisions in fishes are communicated via a variety of factors, such as colour signals, amongst other ultraviolet (UV) signals. The sensitivity for ultraviolet signals is assumed to be costly and a function of the predominant ecological conditions. The island of North Uist, Scotland, comprises bodies of water that possess great variation in their spectral distribution, especially in the UV spectral range. We examined different populations of three‐spined stickleback (Gasterosteus aculeatus L.), which is known to use UV for visual tasks, consisting of three populations from tea‐stained lakes and four from clear‐water lakes, concerning their preferences to join a shoal viewed under UV‐present and UV‐absent conditions. Nonreproductively active sticklebacks from tea‐stained lakes significantly preferred the shoal under UV‐absent conditions, whereas sticklebacks from clear‐water lakes did not show a significant preference. Reflection measurements showed that the UV chroma (intensity) of sticklebacks from tea‐stained lakes was higher than that of sticklebacks from clear‐water, most likely contrasting maximally against the UV‐poor background or compensating for a stronger attenuation of the signal.  相似文献   
93.
Structural and functional brain connectivity are increasingly used to identify and analyze group differences in studies of brain disease. This study presents methods to analyze uni- and bi-modal brain connectivity and evaluate their ability to identify differences. Novel visualizations of significantly different connections comparing multiple metrics are presented. On the global level, “bi-modal comparison plots” show the distribution of uni- and bi-modal group differences and the relationship between structure and function. Differences between brain lobes are visualized using “worm plots”. Group differences in connections are examined with an existing visualization, the “connectogram”. These visualizations were evaluated in two proof-of-concept studies: (1) middle-aged versus elderly subjects; and (2) patients with schizophrenia versus controls. Each included two measures derived from diffusion weighted images and two from functional magnetic resonance images. The structural measures were minimum cost path between two anatomical regions according to the “Statistical Analysis of Minimum cost path based Structural Connectivity” method and the average fractional anisotropy along the fiber. The functional measures were Pearson’s correlation and partial correlation of mean regional time series. The relationship between structure and function was similar in both studies. Uni-modal group differences varied greatly between connectivity types. Group differences were identified in both studies globally, within brain lobes and between regions. In the aging study, minimum cost path was highly effective in identifying group differences on all levels; fractional anisotropy and mean correlation showed smaller differences on the brain lobe and regional levels. In the schizophrenia study, minimum cost path and fractional anisotropy showed differences on the global level and within brain lobes; mean correlation showed small differences on the lobe level. Only fractional anisotropy and mean correlation showed regional differences. The presented visualizations were helpful in comparing and evaluating connectivity measures on multiple levels in both studies.  相似文献   
94.
Foliar fungal communities of plants are diverse and ubiquitous. In grasses endophytes may increase host fitness; in trees, their ecological roles are poorly understood. We investigated whether the genotype of the host tree influences community structure of foliar fungi. We sampled leaves from genotyped balsam poplars from across the species'' range, and applied 454 amplicon sequencing to characterize foliar fungal communities. At the time of the sampling the poplars had been growing in a common garden for two years. We found diverse fungal communities associated with the poplar leaves. Linear discriminant analysis and generalized linear models showed that host genotypes had a structuring effect on the composition of foliar fungal communities. The observed patterns may be explained by a filtering mechanism which allows the trees to selectively recruit fungal strains from the environment. Alternatively, host genotype-specific fungal communities may be present in the tree systemically, and persist in the host even after two clonal reproductions. Both scenarios are consistent with host tree adaptation to specific foliar fungal communities and suggest that there is a functional basis for the strong biotic interaction.  相似文献   
95.
Many therapeutic proteins possessing a small size are rapidly cleared from circulation. Half-life extension strategies have therefore become increasingly important to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Here, we performed a comparative analysis of the half-life extension properties of various bacterial immunoglobulin-binding domains (IgBDs) derived from Staphylococcus protein A (SpA), Streptococcus protein G (SpG), and Finegoldia (formerly Peptostreptococcus) protein L (PpL). These domains, composed of 50-60 amino acid residues, were fused to the C terminus of a single-chain Fv and a bispecific single-chain diabody, respectively. All fusion proteins were produced in mammalian cells and retained their antigen-binding properties. The half-lives of the antibody molecules were prolonged to varying extents for the different IgBDs. The strongest effects in mice were observed for domain C3 of SpG (SpG(C3)) followed by domains B and D of SpA, suggesting that SpG(C3) is particularly useful to extend the plasma half-life of small proteins.  相似文献   
96.
97.
The aerobic respiratory chain of the thermohalophilic bacterium Rhodothermus marinus, a nonphotosynthetic organism from the Bacteroidetes/Chlorobi group, contains a high-potential iron–sulfur protein (HiPIP) that transfers electrons from a bc 1 analog complex to a caa 3 oxygen reductase. Here, we describe the crystal structure of the reduced form of R. marinus HiPIP, solved by the single-wavelength anomalous diffraction method, based on the anomalous scattering of the iron atoms from the [4Fe–4S]3+/2+ cluster and refined to 1.0 Å resolution. This is the first structure of a HiPIP isolated from a nonphotosynthetic bacterium involved in an aerobic respiratory chain. The structure shows a similar environment around the cluster as the other HiPIPs from phototrophic bacteria, but reveals several features distinct from those of the other HiPIPs of phototrophic bacteria, such as a different fold of the N-terminal region of the polypeptide due to a disulfide bridge and a ten-residue-long insertion.  相似文献   
98.
With only 688 protein-coding genes, Mycoplasma pneumoniae is one of the smallest self-replicating organisms. These bacteria use glycolysis as the major pathway for ATP production by substrate-level phosphorylation, suggesting that this pathway must be optimized to high efficiency. In this study, we have investigated the interactions between glycolytic enzymes using the bacterial adenylate cyclase-based two-hybrid system. We demonstrate that most of the glycolytic enzymes perform self-interactions, suggesting that they form dimers or other oligomeric forms. In addition, enolase was identified as the central glycolytic enzyme of M. pneumoniae due to its ability to directly interact with all other glycolytic enzymes. Our results support the idea of the formation of a glycolytic complex in M. pneumoniae and we suggest that the formation of this complex might ensure higher fluxes through the glycolytic pathway than would be possible with isolated non-interacting enzymes.  相似文献   
99.
Optogenetics has been harnessed to shed new mechanistic light on current and future therapeutic strategies. This has been to date achieved by the regulation of ion flow and electrical signals in neuronal cells and neural circuits that are known to be affected by disease. In contrast, the optogenetic delivery of trophic biochemical signals, which support cell survival and are implicated in degenerative disorders, has never been demonstrated in an animal model of disease. Here, we reengineered the human and Drosophila melanogaster REarranged during Transfection (hRET and dRET) receptors to be activated by light, creating one-component optogenetic tools termed Opto-hRET and Opto-dRET. Upon blue light stimulation, these receptors robustly induced the MAPK/ERK proliferative signaling pathway in cultured cells. In PINK1B9 flies that exhibit loss of PTEN-induced putative kinase 1 (PINK1), a kinase associated with familial Parkinson’s disease (PD), light activation of Opto-dRET suppressed mitochondrial defects, tissue degeneration and behavioral deficits. In human cells with PINK1 loss-of-function, mitochondrial fragmentation was rescued using Opto-dRET via the PI3K/NF-кB pathway. Our results demonstrate that a light-activated receptor can ameliorate disease hallmarks in a genetic model of PD. The optogenetic delivery of trophic signals is cell type-specific and reversible and thus has the potential to inspire novel strategies towards a spatio-temporal regulation of tissue repair.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号