首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   963篇
  免费   96篇
  2021年   11篇
  2020年   4篇
  2019年   6篇
  2018年   15篇
  2017年   5篇
  2016年   9篇
  2015年   29篇
  2014年   36篇
  2013年   39篇
  2012年   35篇
  2011年   41篇
  2010年   33篇
  2009年   26篇
  2008年   29篇
  2007年   43篇
  2006年   39篇
  2005年   41篇
  2004年   37篇
  2003年   34篇
  2002年   34篇
  2001年   40篇
  2000年   45篇
  1999年   24篇
  1998年   11篇
  1997年   20篇
  1996年   14篇
  1995年   15篇
  1994年   9篇
  1993年   12篇
  1992年   22篇
  1991年   23篇
  1990年   22篇
  1989年   24篇
  1988年   29篇
  1987年   21篇
  1986年   13篇
  1985年   12篇
  1984年   16篇
  1983年   11篇
  1982年   11篇
  1981年   9篇
  1980年   17篇
  1979年   16篇
  1978年   13篇
  1977年   8篇
  1976年   8篇
  1975年   7篇
  1974年   7篇
  1973年   4篇
  1970年   7篇
排序方式: 共有1059条查询结果,搜索用时 31 毫秒
121.
122.
(R)-Roscovitine (CYC202) is often referred to as a "selective inhibitor of cyclin-dependent kinases." Besides its use as a biological tool in cell cycle, neuronal functions, and apoptosis studies, it is currently evaluated as a potential drug to treat cancers, neurodegenerative diseases, viral infections, and glomerulonephritis. We have investigated the selectivity of (R)-roscovitine using three different methods: 1) testing on a wide panel of purified kinases that, along with previously published data, now reaches 151 kinases; 2) identifying roscovitine-binding proteins from various tissue and cell types following their affinity chromatography purification on immobilized roscovitine; 3) investigating the effects of roscovitine on cells deprived of one of its targets, CDK2. Altogether, the results show that (R)-roscovitine is rather selective for CDKs, in fact most kinases are not affected. However, it binds an unexpected, non-protein kinase target, pyridoxal kinase, the enzyme responsible for phosphorylation and activation of vitamin B6. These results could help in interpreting the cellular actions of (R)-roscovitine but also in guiding the synthesis of more selective roscovitine analogs.  相似文献   
123.
Reduced expression of CD62L can identify tumor-specific T cells in lymph nodes draining murine tumors. Here, we examined whether this strategy could isolate tumor-specific T cells from vaccinated patients. Tumor vaccine-draining lymph node (TVDLN) T cells of seven patients were separated into populations with reduced (CD62LLow) or high levels of CD62L (CD62LHigh). Effector T cells generated from CD62LLow cells maintained or enriched the autologous tumor-specific type 1 cytokine response compared to unseparated TVDLN T cells in four of four patients showing tumor-specific cytokine secretion. Interestingly, effector T cells generated from CD62LLow or CD62LHigh TVDLN were polarized towards a dominant type 1 or type 2 cytokine profile, respectively. For CD62LLow T cells the type 1 cytokine profile appeared determined prior to culture. Since a tumor-specific type 1 cytokine profile appears critical for mediating anti-tumor activity in vivo, this approach might be used to isolate T cells for adoptive immunotherapy.  相似文献   
124.
The molecular mechanisms underlying oocyte maturation in the annelid polychaetes Arenicola marina and Arenicola defodiens were investigated. In both species, a hitherto unidentified hormone triggers synchronous and rapid transition from prophase to metaphase, a maturation process which can be easily reproduced in vitro. Activation of a roscovitine- and olomoucine-sensitive M-phase-specific histone, H1 kinase, occurs during oocyte maturation. Using affinity chromatography on immobilized p9CKShs1, we purified CDK1 and cyclin B from oocyte extracts prepared from both phases and both species. In prophase, CDK1 is present both as an inactive, but Thr161-phosphorylated monomer, and as an inactive (Tyr15-phosphorylated) heterodimer with cyclin B. Prophase to metaphase transition is associated with complete tyrosine dephosphorylation of the cyclin B-associated CDK1, with phosphorylation of cyclin B, and with dramatic activation of the kinase activity of the CDK1/cyclin B complex. We propose that Arenicola oocytes may provide an ideal model system to investigate the acquisition of the ability of oocytes to be fertilized that occurs as oocyte shift from prophase to metaphase, an important physiological event, probably regulated by active CDK1/cyclin B.  相似文献   
125.
Antiestrogens, such as tamoxifen, are widely used for endocrine treatment of estrogen receptor-positive breast cancer. However, as breast cancer progresses, development of tamoxifen resistance is inevitable. The mechanisms underlying this resistance are not well understood. To identify genes involved in tamoxifen resistance, we have developed a rapid screening method. To alter the tamoxifen-sensitive phenotype of human ZR-75-1 breast cancer cells into a tamoxifen-resistant phenotype, the cells were infected with retroviral cDNA libraries derived from human placenta, human brain, and mouse embryo. Subsequently, the cells were selected for proliferation in the presence of 4-hydroxy-tamoxifen (OH-TAM) and integrated cDNAs were identified by sequence similarity searches. From 155 OH-TAM-resistant cell colonies, a total of 25 candidate genes were isolated. Seven of these genes were identified in multiple cell colonies and thus cause antiestrogen resistance. The epidermal growth factor receptor, platelet-derived growth factor receptor-alpha, platelet-derived growth factor receptor-beta, colony-stimulating factor 1 receptor, neuregulin1, and fibroblast growth factor 17 that we have identified have been described as key regulators in the mitogen-activated protein kinase pathway. Therefore, this pathway could be a valuable target in the treatment of patients with breast cancer resistant to endocrine treatment. In addition, the putative gene LOC400500, predicted by in silico analysis, was identified. We showed that ectopic expression of this gene, designated as breast cancer antiestrogen resistance 4 (BCAR4), caused OH-TAM resistance and anchorage-independent cell growth in ZR-75-1 cells and that the intact open reading frame was required for its function. We conclude that retroviral transfer of cDNA libraries into human breast cancer cells is an efficient method for identifying genes involved in tamoxifen resistance.  相似文献   
126.
BACKGROUND: Several studies have suggested a protective effect of folic acid (FA) on congenital heart anomalies. Down syndrome (DS) infants are known to have a high frequency of heart anomalies. Not all children with DS suffer from heart anomalies, which raises the question whether maternal factors might affect the risk of these anomalies. Our objectives were to investigate whether first-trimester FA use protects against heart anomalies among DS children. METHODS: Women with liveborn DS children participating in the Slone Epidemiology Center Birth Defects Study between 1976 and 1997 were included. We performed case-control analyses using DS, with heart anomalies as cases and DS, without heart anomalies as controls. Subanalyses were performed for defects that have been associated with FA in non-DS populations (conotruncal, ventricular septal [VSD]) and for those that are associated with DS (ostium secundum type atrial septal defects [ASD] and endocardial cushion defects [ECD]). Exposure was defined as the use of any FA-containing product for an average of at least 4 days per week during the first 12 weeks of pregnancy, whereas no exposure was defined as no use of FA in these 12 weeks. RESULTS: Of the 223 cases, 110 (49%) were exposed versus 84 (46%) of the 184 controls. After adjustment for possible confounders, no protective effect of FA was found on heart anomalies overall (OR 0.95, 95% CI: 0.61-1.47) nor separately for conotruncal defects, VSDs, ASDs, or ECDs. CONCLUSIONS: Our study does not show a protective effect of FA on heart anomalies among infants with DS.  相似文献   
127.
In the first 6 months of the H1N1 swine-origin influenza virus (S-OIV) pandemic, the vast majority of infections were relatively mild. It has been postulated that mutations in the viral genome could result in more virulent viruses, leading to a more severe pandemic. Mutations E627K and D701N in the PB2 protein have previously been identified as determinants of avian and pandemic influenza virus virulence in mammals. These mutations were absent in S-OIVs detected early in the 2009 pandemic. Here, using reverse genetics, mutations E627K, D701N, and E677G were introduced into the prototype S-OIV A/Netherlands/602/2009, and their effects on virus replication, virulence, and transmission were investigated. Mutations E627K and D701N caused increased reporter gene expression driven by the S-OIV polymerase complex. None of the three mutations affected virus replication in vitro. The mutations had no major impact on virus replication in the respiratory tracts of mice and ferrets or on pathogenesis. All three mutant viruses were transmitted via aerosols or respiratory droplets in ferrets. Thus, the impact of key known virulence markers in PB2 in the context of current S-OIVs was surprisingly small. This study does not exclude the possibility of emergence of S-OIVs with other virulence-associated mutations in the future. We conclude that surveillance studies aimed at detecting S-OIVs with increased virulence or transmission should not rely solely on virulence markers identified in the past but should include detailed characterization of virus phenotypes, guided by genetic signatures of viruses detected in severe cases of disease in humans.The new H1N1 swine-origin influenza virus (S-OIV) recently emerged to cause the first influenza pandemic in 40 years (2). The S-OIV presumably emerged from pigs, as its genome was shown to consist of six gene segments of “triple-reassortant” swine viruses and two of “Eurasian lineage” swine viruses (9). The start of the S-OIV pandemic has been relatively mild, with a clinical spectrum ranging from mild upper respiratory tract illness to sporadic cases of severe pneumonia leading to acute respiratory distress syndrome (22). As of 15 November 2009, worldwide, more than 206 countries have reported laboratory-confirmed cases of S-OIV infection, including over 6,770 deaths (32).In previous influenza pandemics, such as the Spanish influenza pandemic of 1918 and the Hong Kong influenza pandemic of 1968, a first wave of cases of relatively mild illnesses was followed by more severe subsequent waves (29). The reason for this increased severity has remained largely unknown, but one possible explanation could be that the pandemic viruses required further adaptation to the human host, resulting in the emergence of viruses that were more virulent than those of the first wave. Such adaptive changes could occur by gene reassortment between cocirculating influenza A viruses or by mutation.In the past decade, determinants of influenza A virus virulence have been mapped using reverse genetics with a variety of pandemic, epidemic, and zoonotic influenza viruses. Mutations affecting virulence and host range have frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with sialic acids, the virus receptors on host cells (11, 18, 30). Nonstructural protein 1 (NS1) has been implicated in the virulence of highly pathogenic avian influenza (HPAI) virus H5N1 and the 1918 H1N1 virus, as the NS1 proteins of these viruses were shown to act as strong antagonists of the interferon pathways (10, 25). Furthermore, the polymerase genes, in particular the PB2 gene, have been shown to be important determinants of virulence in the HPAI H5N1 and H7N7 viruses and of transmission in the 1918 H1N1 virus (11, 21, 31). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is found generally in avian influenza viruses, while human viruses have a lysine (K), and this mutation has been described as a determinant of the host range in vitro (28). When avian viruses lacking the E627K substitution were passaged in mice, the viruses acquired the mutation spontaneously upon a single passage (15, 17). In the HPAI H5N1 and H7N7 viruses, E627K was shown to be the prime determinant of pathogenesis in mice (11, 21, 23). Given that all human and many zoonotic influenza viruses of the last century contained 627K (1), it was surprising that the S-OIV had 627E.Additionally, the aspartate (D)-to-asparagine (N) mutation at position 701 of PB2, which was shown to compensate for the absence of E627K, has also not been detected in S-OIV (27). This D701N mutation has previously been shown to expand the host range of avian H5N1 to mice and humans (3, 15) and to increase virus transmission in guinea pigs (27). Thus, S-OIV was the first known human pandemic virus with 627E and 701D, and it has been speculated that S-OIV could mutate into a more virulent form by acquiring one of these mutations, or both.On 8 May 2009, the detection of another mutation in the PB2 gene of S-OIV, an E-to-glycine (G) mutation at position 667, was reported (http://www.promedmail.org/pls/apex/f?p=2400:1000, archive no. 20090508.1722). It has previously been suggested that the E667G substitution in PB2 of HPAI H5N1 virus was under positive selection and possibly played a role in sustainable transmission in humans (14).On 28 September 2009, detection of the E627K mutation in PB2 of S-OIVs of two individuals in the Netherlands was reported (http://www.promedmail.org/pls/apex/f?p=2400:1000, archive no. 20090928.3394) and raised concern about the possible enhanced replication of the S-OIV in humans, possibly associated with increased virulence. To date, the D701N mutation in PB2 has not been reported in any of the S-OIVs sequenced, and additional viruses with mutation E627K have not been recorded, either. In contrast, viruses with E677G have been reported from the United States, Canada, Germany, the United Kingdom, Norway, and France, according to the public sequence databases.Here, the effects of the E627K, D701N, and E677G mutations in the PB2 genes of S-OIVs was investigated using genetically engineered influenza viruses based on a prototype S-OIV, A/Netherlands/602/2009. Polymerase activity was measured in minigenome assays in human 293T cells, virus replication was analyzed in Madin-Darby Canine kidney (MDCK) cells, virulence was tested in mouse and ferret models, and transmission by aerosols or respiratory droplets was tested in ferrets. In contrast to the earlier assumptions based on experience with other influenza A viruses, S-OIVs with E627K, D701N, or E677G in PB2 did not show a marked increase in virulence or transmission compared to the wild-type virus.  相似文献   
128.
129.
The array CGH technique (Array Comparative Genome Hybridization) has been developed to detect chromosomal copy number changes on a genome-wide and/or high-resolution scale. It is used in human genetics and oncology, with great promise for clinical application. Until recently primarily PCR amplified bacterial artificial chromosomes (BACs) or cDNAs have been spotted as elements on the array. The large-scale DNA isolations or PCR amplifications of the large-insert clones necessary for manufacturing the arrays are elaborate and time-consuming. Lack of a high-resolution highly sensitive (commercial) alternative has undoubtedly hindered the implementation of array CGH in research and diagnostics. Recently, synthetic oligonucleotides as arrayed elements have been introduced as an alternative substrate for array CGH, both by academic institutions as well as by commercial providers. Oligonucleotide libraries or ready-made arrays can be bought off-the-shelf saving considerable time and efforts. For RNA expression profiling, we have seen a gradual transition from in-house printed cDNA-based expression arrays to oligonucleotide arrays and we expect a similar transition for array CGH. This review compares the different platforms and will attempt to shine a light on the ‘BAC to the future’ of the array CGH technique.  相似文献   
130.
Epitheliocystis in leafy seadragon (Phycodurus eques), silver perch (Bidyanus bidyanus), and barramundi (Lates calcarifer), previously associated with chlamydial bacterial infection using ultrastructural analysis, was further investigated by using molecular and immunocytochemical methods. Morphologically, all three species showed epitheliocystis cysts in the gills, and barramundi also showed lymphocystis cysts in the skin. From gill cysts of all three species and from skin cysts of barramundi 16S rRNA gene fragments were amplified by PCR and sequenced, which clustered by phylogenetic analysis together with other chlamydia-like organisms in the order Chlamydiales in a lineage separate from the family Chlamydiaceae. By using in situ RNA hybridization, 16S rRNA Chlamydiales-specific sequences were detected in gill cysts of silver perch and in gill and skin cysts of barramundi. By applying immunocytochemistry, chlamydial antigens (lipopolysaccharide and/or membrane protein) were detected in gill cysts of leafy seadragon and in gill and skin cysts of barramundi, but not in gill cysts of silver perch. In conclusion, this is the first time epitheliocystis agents of leafy seadragon, silver perch and barramundi have been undoubtedly identified as belonging to bacteria of the order Chlamydiales by molecular methods. In addition, the results suggested that lymphocystis cysts, known to be caused by iridovirus infection, could be coinfected with the epitheliocystis agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号