首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2073篇
  免费   220篇
  2022年   19篇
  2021年   28篇
  2020年   20篇
  2019年   25篇
  2018年   41篇
  2017年   46篇
  2016年   67篇
  2015年   68篇
  2014年   100篇
  2013年   108篇
  2012年   147篇
  2011年   128篇
  2010年   86篇
  2009年   86篇
  2008年   108篇
  2007年   135篇
  2006年   86篇
  2005年   84篇
  2004年   76篇
  2003年   88篇
  2002年   83篇
  2001年   48篇
  2000年   44篇
  1999年   61篇
  1998年   15篇
  1997年   20篇
  1996年   17篇
  1995年   10篇
  1994年   18篇
  1993年   21篇
  1992年   25篇
  1991年   26篇
  1990年   31篇
  1989年   26篇
  1988年   22篇
  1987年   25篇
  1986年   23篇
  1985年   23篇
  1984年   23篇
  1983年   15篇
  1982年   11篇
  1981年   11篇
  1979年   10篇
  1978年   11篇
  1977年   12篇
  1976年   12篇
  1975年   14篇
  1974年   11篇
  1973年   19篇
  1971年   9篇
排序方式: 共有2293条查询结果,搜索用时 796 毫秒
101.
Aspartimide (Asi) formation is a notorious side reaction in peptide synthesis that is well characterized and described in literature. In this context, we observed significant amounts of chain termination in Fmoc‐SPPS while synthesizing the N‐terminal Xaa‐Asp‐Yaa motif. This termination was caused by the formation of piperazine‐2,5‐diones. We investigated this side reaction using a linear model peptide and independently synthesizing its piperazine‐2,5‐dione derivative. Nuclear magnetic resonance (NMR) data of the side product present in the crude linear peptide proves that exclusively the six‐membered ring is formed whereas the theoretically conceivable seven‐membered 1,4‐diazepine‐2,5‐dione is not found. We propose a mechanism where nucleophilic attack of the N‐terminal amino function takes place at the α‐carbon of the carbonyl group of the corresponding Asi intermediate. In addition, we systematically investigated the impact of (a) different adjacent amino acid residues, (b) backbone protection, and (c) side chain protection of flanking amino acids. The side reaction is directly related to the Asi intermediate. Hence, hindering or avoiding Asi formation reduces or completely suppresses this side reaction.  相似文献   
102.
Hai L  Wagner C  Friedt W 《Genetica》2007,130(3):213-225
Genetic diversity in spring bread wheat (T.aestivum L.) was studied in a total of 69 accessions. For this purpose, 52 microsatellite (SSR) markers were used and a total of 406 alleles were detected, of which 182 (44.8%) occurred at a frequency of <5% (rare alleles). The number of alleles per locus ranged from 2 to 14 with an average of 7.81. The largest number of alleles per locus occurred in the B genome (8.65) as␣compared to the A (8.43) and D (5.93) genomes, respectively. The polymorphism index content (PIC) value varied from 0.24 to 0.89 with an average of 0.68. The highest PIC for all accessions was found in the B␣genome (0.71) as compared to the A (0.68) and D␣genomes (0.63). Genetic distance-based method (standard UPGMA clustering) and a model-based method (structure analysis) were used for cluster analysis. The two methods led to analogical results. Analysis of molecular variance (AMOVA) showed that 80.6% of the total variation could be explained by the variance within the geographical groups. In comparison to the diversity detected for all accessions (H e = 0.68), genetic diversity among European spring bread wheats was H e = 0.65. A comparatively higher diversity was observed between wheat varieties from Southern European countries (Austria/Switzerland, Portugal/Spain) corresponding to those from other regions.  相似文献   
103.
The cytochrome bc1 complex is a dimeric enzyme of the inner mitochondrial membrane that links electron transfer from ubiquinol to cytochrome c by a protonmotive Q cycle mechanism in which ubiquinol is oxidized at one center in the enzyme, referred to as center P, and ubiquinone is rereduced at a second center, referred to as center N. To better understand the mechanism of ubiquinol oxidation, we have examined catalytic activities and pre-steady-state reduction kinetics of yeast cytochrome bc1 complexes with mutations in cytochrome b that we expected would affect oxidation of ubiquinol. We mutated two residues thought to be involved in proton conduction linked to ubiquinol oxidation, Tyr132 and Glu272, and two residues proposed to be involved in docking ubiquinol into the center P pocket, Phe129 and Tyr279. Substitution of Phe129 by lysine or arginine yielded a respiration-deficient phenotype and lipid-dependent catalytic activity. Increased bypass reactions were detectable for both variants, with F129K showing the more severe effects. Substitution with lysine leads to a disturbed coordination of a b heme as deduced from changes in the midpoint potential and the EPR signature. Removal of the aromatic side chain in position Tyr279 lowers the catalytic activity accompanied by a low level of bypass reactions. Pre-steady-state kinetics of the enzymes modified at Glu272 and Tyr132 confirmed the importance of their functional groups for electron transfer. Altered center N kinetics and activation of ubiquinol oxidation by binding of cytochrome c in the Y132F and E272D enzymes indicate long range effects of these mutations.  相似文献   
104.
The severe acute respiratory syndrome coronavirus (SARS-CoV) genome is predicted to encode 14 functional open reading frames, leading to the expression of up to 30 structural and non-structural protein products. The functions of a large number of viral ORFs are poorly understood or unknown. In order to gain more insight into functions and modes of action and interaction of the different proteins, we cloned the viral ORFeome and performed a genome-wide analysis for intraviral protein interactions and for intracellular localization. 900 pairwise interactions were tested by yeast-two-hybrid matrix analysis, and more than 65 positive non-redundant interactions, including six self interactions, were identified. About 38% of interactions were subsequently confirmed by CoIP in mammalian cells. Nsp2, nsp8 and ORF9b showed a wide range of interactions with other viral proteins. Nsp8 interacts with replicase proteins nsp2, nsp5, nsp6, nsp7, nsp8, nsp9, nsp12, nsp13 and nsp14, indicating a crucial role as a major player within the replication complex machinery. It was shown by others that nsp8 is essential for viral replication in vitro, whereas nsp2 is not. We show that also accessory protein ORF9b does not play a pivotal role for viral replication, as it can be deleted from the virus displaying normal plaque sizes and growth characteristics in Vero cells. However, it can be expected to be important for the virus-host interplay and for pathogenicity, due to its large number of interactions, by enhancing the global stability of the SARS proteome network, or play some unrealized role in regulating protein-protein interactions. The interactions identified provide valuable material for future studies.  相似文献   
105.
UNCoordinated-6 (UNC-6) was the first member of the netrin family to be discovered in Caenorhabditis elegans. With homology to human netrin-1, it is a key signaling molecule involved in directing axon migration in nematodes. Similar to netrin-1, UNC-6 interacts with multiple receptors (UNC-5 and UNC-40, specifically) to guide axon migration in development. As a result of the distinct evolutionary path of UNC-6 compared to vertebrate netrins, we decided to employ an integrated approach to study its solution behavior and compare it to the high-resolution structure we previously published on vertebrate netrins. Dynamic light scattering and analytical ultracentrifugation on UNC-6 (with and without its C-domain) solubilized in a low-ionic strength buffer suggested that UNC-6 forms high-order oligomers. An increase in the buffer ionic strength resulted in a more homogeneous preparation of UNC-6, that was used for subsequent solution x-ray scattering experiments. Our biophysical analysis of UNC-6 ΔC solubilized in a high-ionic strength buffer suggested that it maintains a similar head-to-stalk arrangement as netrins ?1 and ?4. This phenomenon is thought to play a role in the signaling behavior of UNC-6 and its ability to move throughout the extracellular matrix.  相似文献   
106.
107.
108.
109.
Understanding female reproductive characteristics is important for assessing fertility, interpreting female behavior, and designing appropriate conservation and captive management plans. In primate species lacking morphological signs of receptivity, such as most colobines, determination of reproductive parameters depends on the analysis of reproductive hormones. Here, we use fecal hormone analysis to characterize cycle patterns (N=6 females) and gestation length (N=7 females) in a group of wild Phayre's leaf monkeys (Trachypithecus phayrei crepusculus) in Phu Khieo Wildlife Sanctuary, Thailand. We found that both fecal estrogen (fE) and progestin (fP) levels showed clear biological patterns indicative of ovulation and conception. However, because fP patterns were inadequate in determining the end of the luteal phase, we used fE rather than fP patterns to delineate menstrual cycle parameters. We found a mean cycle length of 28.4 days (N=10), with follicular and luteal phases of 15.4 (N=10) and 12.5 days (N=14), respectively. On average, females underwent 3.57 (N=7) cycles until conception. Average gestation length was 205.3 days (N=7), with fE levels increasing over the course of pregnancy. Overall, the reproductive characteristics found for Phayre's leaf monkeys were consistent with results for other colobine species, suggesting that fecal hormone monitoring, particularly for fE metabolites, can provide useful reproductive information for this species. Am. J. Primatol. 72:1073–1081, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
110.
4-Hydroxybenzoyl-CoA reductase (4-HBCR) is a key enzyme in the anaerobic metabolism of phenolic compounds. It catalyzes the reductive removal of the hydroxyl group from the aromatic ring yielding benzoyl-CoA and water. The subunit architecture, amino acid sequence, and the cofactor/metal content indicate that it belongs to the xanthine oxidase (XO) family of molybdenum cofactor-containing enzymes. 4-HBCR is an unusual XO family member as it catalyzes the irreversible reduction of a CoA-thioester substrate. A radical mechanism has been proposed for the enzymatic removal of phenolic hydroxyl groups. In this work we studied the spectroscopic and electrochemical properties of 4-HBCR by EPR and M?ssbauer spectroscopy and identified the pterin cofactor as molybdopterin mononucleotide. In addition to two different [2Fe-2S] clusters, one FAD and one molybdenum species per monomer, we also identified a [4Fe-4S] cluster/monomer, which is unique among members of the XO family. The reduced [4Fe-4S] cluster interacted magnetically with the Mo(V) species, suggesting that the centers are in close proximity, (<15 A apart). Additionally, reduction of the [4Fe-4S] cluster resulted in a loss of the EPR signals of the [2Fe-2S] clusters probably because of magnetic interactions between the Fe-S clusters as evidenced in power saturation studies. The Mo(V) EPR signals of 4-HBCR were typical for XO family members. Under steady-state conditions of substrate reduction, in the presence of excess dithionite, the [4Fe-4S] clusters were in the fully oxidized state while the [2Fe-2S] clusters remained reduced. The redox potentials of the redox cofactors were determined to be: [2Fe-2S](+1/+2) I, -205 mV; [2Fe-2S] (+1/+2) II, -255 mV; FAD/FADH( small middle dot)/FADH, -250 mV/-470 mV; [4Fe-4S](+1/+2), -465 mV and Mo(VI)/(V)/(VI), -380 mV/-500 mV. A catalytic cycle is proposed that takes into account the common properties of molybdenum cofactor enzymes and the special one-electron chemistry of dehydroxylation of phenolic compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号