首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17406篇
  免费   2022篇
  国内免费   806篇
  20234篇
  2023年   103篇
  2022年   259篇
  2021年   386篇
  2020年   348篇
  2019年   423篇
  2018年   436篇
  2017年   377篇
  2016年   545篇
  2015年   687篇
  2014年   867篇
  2013年   894篇
  2012年   1065篇
  2011年   990篇
  2010年   654篇
  2009年   679篇
  2008年   826篇
  2007年   736篇
  2006年   659篇
  2005年   570篇
  2004年   572篇
  2003年   503篇
  2002年   466篇
  2001年   1227篇
  2000年   1060篇
  1999年   788篇
  1998年   283篇
  1997年   293篇
  1996年   216篇
  1995年   177篇
  1994年   176篇
  1993年   127篇
  1992年   409篇
  1991年   354篇
  1990年   301篇
  1989年   235篇
  1988年   207篇
  1987年   155篇
  1986年   151篇
  1985年   122篇
  1984年   72篇
  1983年   67篇
  1981年   33篇
  1979年   44篇
  1976年   39篇
  1975年   36篇
  1973年   42篇
  1972年   52篇
  1971年   48篇
  1970年   39篇
  1966年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Gametophytic self-incompatibility in plants involves rejection of pollen when pistil and pollen share the same allele at the S locus. This locus is highly multiallelic, but the mechanism by which new functional S alleles are generated in nature has not been determined and remains one of the most intriguing conceptual barriers to a full understanding of self-incompatibility. The S(11) and S(13) RNases of Solanum chacoense differ by only 10 amino acids, but they are phenotypically distinct (i.e., they reject either S(11) or S(13) pollen, respectively). These RNases are thus ideally suited for a dissection of the elements involved in recognition specificity. We have previously found that the modification of four amino acid residues in the S(11) RNase to match those in the S(13) RNase was sufficient to completely replace the S(11) phenotype with the S(13) phenotype. We now show that an S(11) RNase in which only three amino acid residues were modified to match those in the S(13) RNase displays the unprecedented property of dual specificity (i.e., the simultaneous rejection of both S(11) and S(13) pollen). Thus, S(12)S(14) plants expressing this hybrid S RNase rejected S(11), S(12), S(13), and S(14) pollen yet allowed S(15) pollen to pass freely. Surprisingly, only a single base pair differs between the dual-specific S allele and a monospecific S(13) allele. Dual-specific S RNases represent a previously unsuspected category of S alleles. We propose that dual-specific alleles play a critical role in establishing novel S alleles, because the plants harboring them could maintain their old recognition phenotype while acquiring a new one.  相似文献   
992.
Larval stages and adults of Procamallanus (Spirocamallanus) pereirai Annereaux, 1946 are described from naturally infected Paralonchurus brasiliensis (Steindachner) (Sciaenidae) from the coast of the State of Rio de Janeiro, Brazil. The translucent first-stage larvae have a denticulate process at the anterior end, no buccal capsule or esophagus undifferentiated into anterior muscular and posterior glandular parts and an elongate tail; third-stage larvae have a tail with three terminal projections, a buccal capsule divided into an anterior portion with 12-20 ridges running to the left and a posterior smooth portion, and an esophagus with muscular and glandular regions. Fourth-stage larvae exhibit a buccal capsule lacking a distinct basal ring with ridges running to the right and a tail with two terminal processes, as in adults. New host records are reported and their role in its life-cycle are discussed.  相似文献   
993.
The plastidic thioredoxin F-type (TrxF) protein plays an important role in plant saccharide metabolism. In this study, a gene encoding the TrxF protein, named SlTrxF, was isolated from tomato. The coding region of SlTrxF was cloned into a binary vector under the control of 35S promoter and then transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants exhibited increased starch accumulation compared to the wild-type (WT). Real-time quantitative PCR analysis showed that constitutive expression of SlTrxF up-regulated the expression of ADP-glucose pyrophosphorylase (AGPase) small subunit (AtAGPase-S1 and AtAGPase-S2), AGPase large subunit (AtAGPase-L1 and AtAGPase-L2) and soluble starch synthase (AtSSS I, AtSSS II, AtSSS III and AtSSS IV) genes involved in starch biosynthesis in the transgenic Arabidopsis plants. Meanwhile, enzymatic analyses showed that the major enzymes (AGPase and SSS) involved in the starch biosynthesis exhibited higher activities in the transgenic plants compared to WT. These results suggest that SlTrxF may improve starch content of Arabidopsis by regulating the expression of the related genes and increasing the activities of the major enzymes involved in starch biosynthesis.  相似文献   
994.
Bufalin (BF) exhibited antiproliferation and antimigration effects on human A549 lung cancer cells. To search its target‐related proteins, protein expression profiles of BF‐treated and control cells were compared using two quantitative proteomic methods, iTRAQ‐based and label‐free proteomic analysis. A total of 5428 proteins were identified in iTRAQ‐based analysis while 6632 proteins were identified in label‐free analysis. The number of common identified proteins of both methods was 4799 proteins. By application of 1.20‐fold for upregulated and 0.83‐fold for downregulated cutoff values, 273 and 802 differentially expressed proteins were found in iTRAQ‐based and label‐free analysis, respectively. The number of common differentially expressed proteins of both methods was 45 proteins. Results of bioinformational analysis using MetacoreTM showed that the two proteomic methods were complementary and both suggested the involvement of oxidative stress and regulation of gene expression in the effects of BF, and fibronectin‐related pathway was suggested to be an important pathway affected by BF. Western blotting assay results confirmed BF‐induced change in levels of fibronectin and other related proteins. Overexpression of fibronectin by plasmid transfection ameliorated antimigration effects of BF. Results of the present study provided information about possible target‐related proteins and signal network of BF.  相似文献   
995.
This study attempted to eradicate Apple stem pitting virus (ASPV) and Apple stem grooving virus (ASGV) from virus‐infected in vitro shoots of apple rootstocks ‘M9’ and ‘M26’ using shoot tip culture and cryopreservation. In shoot tip culture, shoot tips (0.2 mm in length) containing two leaf primordia failed to show shoot regrowth. Although shoot regrowth rate was the highest in the largest shoot tips (1.0 mm in length) containing four leaf primordia, none of the regenerated shoots was virus‐free. Shoot tips (0.5 mm in length) containing two and three leaf primordia produced 100% and 10% of ASPV‐free shoots, respectively, while those (1.0 mm) containing four leaf primordia were not able to eradicate ASPV. ASGV could not be eradicated by shoot tip culture, regardless of the size of the shoot tips tested. In cryopreservation, shoot tips (0.5 mm in length) containing two leaf primordia did not resume shoot growth. Although 1.0‐mm and 1.5‐mm shoot tips gave similarly high ASPV‐free frequencies, the latter had much higher shoot regrowth rate than the former. Very similar results of shoot regrowth and virus eradication by shoot tip culture and cryopreservation were observed in both ‘M9’ and ‘M26’. Histological observations showed that only cells in upper part of apical dome and in leaf primordia 1–3 survived, while other cells were damaged or killed, in shoot tips following cryopreservation. Virus immunolocalization found ASPV was not detected in upper part of apical dome and leaf primordia 1 and 2, but was present in lower part of apical dome, and in leaf primordium 4 and more developed tissues in all samples tested. ASPV was also detected in leaf primordium 3 in about 16.7% and 13.3% samples tested in ‘M9’ and ‘M26’. ASGV was observed in apical dome and leaf primordia 1–6, leaving only a few top layers of cells in apical dome free of the virus. Different abilities of ASPV and ASGV to invade leaf petioles and shoot tips were also noted.  相似文献   
996.
997.
A central goal for most biopharmaceutical companies is to reduce the development timeline to reach clinical proof of concept. This objective requires the development of tools that ensure the quality of biotherapeutic material destined for the clinic. Recent advances in high throughput protein analytics provide confidence in our ability to assess productivity and product quality attributes at early stages of cell line development. However, one quality attribute has, until recently, been absent from the standard battery of analytical tests facilitating informed choices early in cell line selection: genetic sequence confirmation. Techniques historically used for mutation analysis, such as detailed mass spectrometry, have limitations on the sample number and turnaround times making it less attractive at early stages. Thus, we explored the utility of Next‐Generation Sequencing (NGS) as a solution to address these limitations. Amplicon sequencing is one such NGS technique that is robust, rapid, sensitive, and amenable to multiplexing, all of which are essential attributes for our purposes. Here we report a NGS method based upon amplicon sequencing that has been successfully incorporated into our cell line development workflow alongside other high‐throughput protein analytical assays. The NGS method has demonstrated its value by identifying at least one Chinese hamster ovary (CHO) clone expressing a variant form of the biotherapeutic in each of the four clinical programs in which it has been utilized. We believe this sequence confirmation method is essential to safely accelerating the time to clinical proof of concept of biotherapeutics, and guard against delays related to sequence mutations. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:813–817, 2016  相似文献   
998.
In order to investigate the mechanism of apoptosis in rat intestinal epithelial cells (IEC-6) induced by hydrogen peroxide (H2O2), IEC-6 cells were subjected to 20 μmol/L H2O2 and cell proliferation activity was determined using 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide. Cell morphology was observed by microscopy and cell apoptosis was detected by acridine orange and ethidium bromide staining and the portion of apoptotic cells was measured by flow cytometry. Genes and proteins related to cell apoptosis were detected by RT-PCR and Western blotting, and the mitochondrial membrane potential was evaluated by fluorescence probes. Results: Significant morphology damage was caused by exposure to H2O2, and results showed that ROS generation significantly increased (P < 0.01). The activity of superoxide dismutase decreased significantly (P < 0.05), malondialdehyde content increased (P < 0.05), and expression of both catalase and glutathione peroxidase decreased significantly (P < 0.05) in the H2O2 treatment group. Mitochondrion membrane potential was reduced, cytochrome released into the cytoplasm and caspase-9 and caspase-3 were significantly increased (P < 0.01) after treatment with H2O2. Moreover, the ratio of Bax/Bcl-2 and apoptosis were significantly increased (P < 0.01) in the H2O2 group. In conclusion, the present study indicated that the mitochondrial pathway plays a vital role in H2O2 induced IEC-6 cell apoptosis.  相似文献   
999.
The effects of foliar spraying with spermidine (Spd) on antioxidant system in tomato (Lycopersicon esculentum Mill.) seedlings were investigated under high temperature stress. The high temperature stress significantly inhibited plant growth and reduced chlorophyll (Chl) content. Application of exogenous 1 mM Spd alleviated the inhibition of growth induced by the high temperature stress. Malondialdehyde (MDA), hydrogen peroxide (H2O2) content and superoxide anion (O2) generation rate were significantly increased by the high temperature stress, but Spd significantly reduced the accumulation of reactive oxygen species (ROS) and MDA content under the stress. The high temperature stress significantly decreased glutathione (GSH) content and activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), but increased contents of dehydroascorbic acid (DHA), ascorbic acid (AsA), and oxidized glutathione (GSSG) in tomato leaves. However, Spd significantly increased the activities of antioxidant enzymes, levels of antioxidants and endogenous polyamines in tomato leaves under the high temperature stress. In addition, to varying degrees, Spd regulated expression of MnSOD, POD, APX2, APX6, GR, MDHAR, DHAR1, and DHAR2 genes in tomato leaves exposed to the high temperature stress. These results suggest that Spd could change endogenous polyamine levels and alleviate the damage by oxidative stress enhancing the non-enzymatic and enzymatic antioxidant system and the related gene expression.  相似文献   
1000.
This study aimed to develop a new vector system to remove selection genes and to introduce two or more genes of interest into plants in order to express them in a coordinated manner. A multigene expression vector was established based on pCamBIA2300 using a selectable marker gene (SMG)-free system based on the combination of the isocaudamer technique and double T-DNA. The vector DT7 containing seven target genes was constructed and introduced into tobacco using Agrobacterium-mediated transformation. Twenty-one of 27 positive transgenic plants contained both T-DNA regions. The co-transformation frequency was 77.8 %. The frequency of unlinked integration of two intact T-DNAs was 22.22 % (6/27). The frequency of removal of SMG from transgenic T1 plants was 19.10 %. These results suggest that this vector system was functional and effective for multigene expression and SMG-free transgenic plant cultivation. At least seven target genes can be co-expressed using this system. Overall, these findings provide a new and highly effective platform for multigene and marker-free transgenic plant production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号