首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5626篇
  免费   480篇
  国内免费   4篇
  6110篇
  2023年   31篇
  2022年   86篇
  2021年   133篇
  2020年   59篇
  2019年   71篇
  2018年   94篇
  2017年   79篇
  2016年   140篇
  2015年   219篇
  2014年   233篇
  2013年   298篇
  2012年   409篇
  2011年   324篇
  2010年   222篇
  2009年   184篇
  2008年   302篇
  2007年   299篇
  2006年   258篇
  2005年   232篇
  2004年   232篇
  2003年   184篇
  2002年   169篇
  2001年   184篇
  2000年   163篇
  1999年   130篇
  1998年   54篇
  1997年   44篇
  1996年   28篇
  1995年   38篇
  1994年   36篇
  1993年   35篇
  1992年   93篇
  1991年   78篇
  1990年   81篇
  1989年   84篇
  1988年   61篇
  1987年   62篇
  1986年   68篇
  1985年   68篇
  1984年   54篇
  1983年   49篇
  1982年   40篇
  1981年   28篇
  1980年   31篇
  1979年   42篇
  1978年   31篇
  1976年   27篇
  1975年   27篇
  1974年   34篇
  1973年   36篇
排序方式: 共有6110条查询结果,搜索用时 15 毫秒
81.
To understand the effects of v-myb expression on mammalian hematopoietic cell differentiation, we have constructed a retroviral vector which can efficiently express v-myb gene product in mammalian cells. Infection of interleukin-3-dependent murine progenitor cell line 32D Cl3, which undergoes terminal differentiation to mature granulocytes in the presence of granulocyte colony-stimulating factor (GCSF), with this recombinant retrovirus does not abrogate its requirement of interleukin-3 for growth. However, expression of v-myb in these cells blocks their ability to differentiate in response to GCSF. Instead, the v-myb-infected cells proliferate indefinitely in the presence of GCSF. 32D Cl3 cells infected with empty vector carrying only the neomycin resistance gene responded to the addition of GCSF in a manner identical to that of the uninfected cells and underwent terminal differentiation into granulocytes. These results suggest that oncogenic forms of myb gene bring about transformation by blocking the differentiation signal derived by cytokines while promoting the proliferative signal transduction pathways.  相似文献   
82.
83.
84.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
85.
Projection of land use and land-cover change is highly uncertain yet drives critical estimates of carbon emissions, climate change, and food and bioenergy production. We use new, spatially explicit land availability data in conjunction with a model sensitivity analysis to estimate the effects of additional land protection on land use and land cover. The land availability data include protected land and agricultural suitability and is incorporated into the Moirai land data system for initializing the Global Change Analysis Model. Overall, decreasing land availability is relatively inefficient at preserving undeveloped land while having considerable regional land-use impacts. Current amounts of protected area have little effect on land and crop production estimates, but including the spatial distribution of unsuitable (i.e., unavailable) land dramatically shifts bioenergy production from high northern latitudes to the rest of the world, compared with uniform availability. This highlights the importance of spatial heterogeneity in understanding and managing land change. Approximately doubling the current protected area to emulate a 30% protected area target may avoid land conversion by 2050 of less than half the newly protected extent while reducing bioenergy feedstock land by 10.4% and cropland and grazed pasture by over 3%. Regional bioenergy land may be reduced (increased) by up to 46% (36%), cropland reduced by up to 61%, pasture reduced by up to 100%, and harvested forest reduced by up to 35%. Only a few regions show notable gains in some undeveloped land types of up to 36%. Half of the regions can reach the target using only unsuitable land, which would minimize impacts on agriculture but may not meet conservation goals. Rather than focusing on an area target, a more robust approach may be to carefully select newly protected land to meet well-defined conservation goals while minimizing impacts to agriculture.  相似文献   
86.
10-Deacetylabaccatin III (10 DAB), an important precursor for paclitaxel semisynthesis, is enhanced in yew extracts using C10-deacetylase and C13-deacylase enzymes.(4) C10-deacetylase is an intracellular enzyme produced by the fermentation of a soil microorganism, Nocardioides luteus (SC 13912). During the fermentation of Nocardioides luteus, the growth of cells reaches a maximum growth at 28 h. C10-deacetylase enzyme activity starts at 26 h and peaks at 38 h of the fermentation. The cells are recovered by centrifugation. The C10-deacetylase enzyme was purified from the Nocardioides luteus cells. The enzyme was purified 190-fold to near homogeneity. The purified enzyme appeared as a single band on 12.5% SDS-PAGE analysis with a molecular weight of 40,000 daltons. (c) 1995 John Wiley & Sons, Inc.  相似文献   
87.
This study examined the role of protein tyrosine kinase (PTK) and protein kinase C (PKC) in the signal transduction pathways for lymphocyte activation through IL-2R to generate LAK cells and through TCR—CD3 to generate CD3-AK cells. Two PTK inhibitors [herbimycin A and genistein (PTK-I)] and two PKC inhibitors [calphositin C and staurosporine (PKC-I)] were used in the experiments. It was found that the primary activation pathway through IL-2R was PTK-dependent; that is, generation of both the IL-2-induced proliferative and the cytotoxic responses was completely abrogated by PTK-I and not by PKC-I. Quite different results were obtained with the αCD3-induced CD3-AK cell response. First, the αCD3-induced proliferation was only partially inhibited by PTK-I or PKC-I alone. Second, generation of CD3-AK cytotoxic response was primarily PKC-dependent; that is, only PKC-I induced significant inhibition. Genistein was found to reduce protein tyrosine phosphorylation in both LAK cells and CD3-AK cells, indicating that CD3-AK cells were also susceptible to PTK-I treatment. Further studies showed that PTK-I and not PKC-I suppressed perforin mRNA expression and N-2-benzyoxycarbonyl-l-lysine thiobeneylester esterase production in LAK cells, and the opposite was true for CD3-AK cells. These results indicate that different pathways were employed in lymphocyte activation through IL-2R and TCR—CD3. The former pathway is primarily PTK-dependent. Activation through TCR—CD3 is a more complex event. Induction of a proliferative response can employ either a PTK- or a PKC-dependent pathway, whereas induction of a cytotoxic response is primarily PKC-dependent. Furthermore, it appears that a PTK-independent pathway exists for the induction of a CD3-AK response and thus suggests that activation of the second messenger PKC may not necessarily be preceded by PTK activation.  相似文献   
88.
89.
90.
The gamma-carboxyglutamic acid (Gla) domains of the vitamin K-dependent blood coagulation proteins contain 10 highly conserved Gla residues within the first 33 residues, but factor IX is unique in possessing 2 additional Gla residues at positions 36 and 40. To determine their importance, factor IX species lacking these Gla residues were isolated from heterologously expressed human factor IX. Using ion-exchange chromatography, peptide mapping, mass spectrometry, and N-terminal sequencing, we have purified and identified two partially carboxylated recombinant factor IX species; factor IX/gamma 40E is uncarboxylated at residue 40 and factor IX/gamma 36,40E is uncarboxylated at both residues 36 and 40. These species were compared with the fully gamma-carboxylated recombinant factor IX, unfractionated recombinant factor IX, and plasma-derived factor IX. As monitored by anti-factor IX:Ca (II)-specific antibodies and by the quenching of intrinsic fluorescence, all these factor IX species underwent the Ca(II)-induced conformational transition required for phospholipid membrane binding and bound equivalently to phospholipid vesicles composed of phosphatidylserine, phosphatidylcholine, and phosphatidylethanolamine. Endothelial cell binding was also similar in all species, with half-maximal inhibition of the binding of 125I-labeled plasma-derived factor IX at concentrations of 2-6 nM. Functionally, factor IX/gamma 36,40E and factor IX/gamma 40E were similar to fully gamma-carboxylated recombinant factor IX and plasma-derived factor IX in their coagulant activity and in their ability to participate in the activation of factor X in the tenase complex both with synthetic phospholipid vesicles and activated platelets. However, Gla 36 and Gla 40 represent part of the epitope targeted by anti-factor IX:Mg(II)-specific antibodies because these antibodies bound factor IX preferentially to factor IX/gamma 36,40E and factor IX/gamma 40E. These results demonstrate that the gamma-carboxylation of glutamic acid residues 36 and 40 in human factor IX is not required for any function of factor IX examined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号