In recent years, the application of arbuscular mycorrhizal fungi (AMF) has been considered to be an important strategy for improving crop yield and quality. In the present study, a factorial experiment based on a complete randomized design with two factors was performed to investigate the effect of AMF and water stress on the essential oil (EO) composition, antioxidant activity, and physiological and morphological characteristics of rose-scented geranium (Pelargonium graveolens L.). The factors included AMF inoculation (Rhizophagus intraradices, Funneliformis mosseae, and a mixture of both species) and irrigation levels [well-watered (WW), moderate drought stress (MDS), and severe drought stress (SDS)]. The main EO constituents were citronellol (31–37%) and geraniol (9–14%) in all treatments. Under water-stress conditions, some constituents increased, such as geraniol and geranyl formate, whereas others decreased, such as linalool, menthone and rose oxide. Overall, the highest amount of citronellol (37.3%) and geraniol (14.8%) was obtained in the plants inoculated with F. mosseae and R. intraradices under WW and MDS conditions, respectively. Antioxidant activity, total flavonoids, and phenolics were increased because of AMF inoculation, whereas a different trend was observed for the phenolic and flavonoid contents under water-stress conditions. Furthermore, water deficit elevated the amount of soluble carbohydrates as well as the proline content, whereas the amount of proline was lower in inoculated plants than in non-inoculated ones. All the growth parameters were improved in the AMF-inoculated plants compared to non-inoculated ones under different irrigation regimes. Drought conditions decreased the photosynthetic pigments and efficiency, whereas AMF plants ameliorated the adverse effect of drought conditions. In general, mycorrhizal inoculation resulted in an improvement in the growth parameters as well as the phytochemical and physiological characteristics of rose-scented geranium.
In this study, concentration of mercury was determined in the trophic levels of benthic, benthopelagic, pelagic fish species, and river birds from Arvand River, located in the Khuzestan province in the lowlands of southwestern Iran at the head of the Persian Gulf. The order of mercury concentrations in tissues of the fish species was as follows: liver>gill>muscle and in tissues of the kingfisher species was as follows: feather>liver>kidney>muscle. Therefore, liver in fish and feather in kingfisher exhibited higher mercury concentration than the other tissues. There was a positive correlation between mercury concentrations in fish and kingfisher species with size of its food items. We expected to see higher mercury levels in tissues of female species because they are larger and can eat larger food items. The results of this study show that the highest mean mercury level were found in the kingfisher (Anas crecca), followed by benthic (Epinephelus diacanthus), benthopelagic (Chanos chanos), and pelagic fish (Strongylura strongylura). Mean value of mercury in fish species, S. strongylura were (0.61 μg g?1 dry weight), C. chanos (0.45 μg g?1 dry weight), E. diacanthus (0.87 μg g?1 dry weight), and in kingfisher species A. crecca was (2.64 μg g?1 dry weight). Significant correlation between mercury concentration in fish and kingfisher may be related to high variability of mercury in the fish. 相似文献
While NTM infection is mainly acquired from environmental exposure, monitoring of environmental niches for NTM is not a routine practice. This study aimed to find the prevalence of environmental NTM in soil and water in four highly populated suburbs of Tehran, Iran.
Material and Methods
A total of 4014 samples from soil and water resources were collected and studied. Sediments of each treated sample were cultured in Lowenstein-Jensen medium and observed twice per week for growth rate, colony morphology, and pigmentation. Colonies were studied with phenotypic tests. Molecular analysis was performed on single colonies derived from subculture of original isolates. Environmental samples were compared with 34 NTM isolates from patients who were residents of the study locations.
Results
Out of 4014 samples, mycobacteria were isolated from 862 (21.4%) specimens; 536 (62.1%) belonged to slow growing mycobacteria (SGM) and 326 (37.8%) were rapid growing mycobacteria (RGM). The five most frequent NTM were M. farcinogens (105/862; 12.1%), M. fortuitum (72/862; 8.3%), M. senegalense (58/862; 6.7%), M. kansasii (54/862; 6.2%), and M. simiae (46/862; 5.3%). In total, 62.5% (539/862) of mycobacterial positive samples were isolated from water and only 37.4% (323/862) of them were isolated from soil samples (P<0.05). Out of 5314 positive clinical samples for mycobacteria, 175 (3.2%) isolates were NTM. The trend of NTM isolates increased from 1.2% (13 out of 1078) in 2004 to 3.8% (39 out of 1005) in 2014 (P = 0.0001). The major clinical isolates were M. simiae (51; 29.1%), M. kansasii (26; 14.8%), M. chelonae (28; 16%), and M. fortuitum (13; 7.4%).
Conclusions
Comparing the distribution pattern of environmental NTM isolates with clinical isolates suggests a possible transmission link, but this does not apply to all environmental NTM species. Our study confirms an increasing trend of NTM isolation from clinical samples that needs further investigation. 相似文献
DNA hybridization and enzymatic digestion for the detection of mutation was investigated on the gold nanoparticles-calf thymus DNA (AuNPs-ctDNA) modified glassy carbon electrode (GCE). The thiol modified probe oligonucleotides (SH-ssDNA) were assembled on the surface of AuNPs-ctDNA modified GCE. The electrochemical response of the electrode was measured by differential pulse voltammetry and cyclic voltammetry. Methylene blue (MB) was used as the electroactive indicator. AuNPs were then dispersed effectively on the GCE surface in the presence of ct-DNA. When hybridization occurred, a decrease in the signal of MB current was observed. The modified electrode was used for the detection of mutations during the enzymatic digestion reaction in DNA. During this reaction, an increase in the signal of MB current was observed. So, the modified SH-ssDNA had a higher electrochemical response on the AuNPs-ctDNA/GCE because of the strong affinity of MB for guanine residues in it. The electrochemical detection of restriction enzyme digestion can provide a simple and practical method for observing single-base mismatches that can help in distinguishing mismatch sequences of DNA from the complementary ones. 相似文献
The cofactor requirements of dehydroquinate synthase from Escherichia coli have been characterized. The homogeneous enzyme, purified from the overproducing strain RB791 (pJB14), is a monomeric metalloenzyme of Mr = 39,000 that contains 1 mol of tightly bound Co(II) according to atomic absorption analysis. The holoenzyme rapidly loses activity upon incubation with EDTA, giving rise to a stable but catalytically inactive apoenzyme. Activity is fully restored by reconstitution with Co(II) and partially restored with other divalent cations. Reconstitution of the apoenzyme with Zn(II) (which is probably the functioning metal in vivo) restores activity to 53% of the level observed with the Co(II)-holoenzyme. The presence of the substrate 3-deoxy-D-arabino-heptulosonate 7-phosphate (1) blocks the inactivation by EDTA. Dehydroquinate synthase also binds 1 mol of NAD+, the presence of which is essential for catalytic activity. The rate constant for the dissociation of NAD+ from the Co(II)-holoenzyme was found to be 0.024 min-1. Under turnover conditions with saturating levels of substrate, the dissociation rate of NAD+ increases by a factor of 40, to 1 min-1. Under these conditions (pH 7.5, 20 degrees C), the Km for NAD+ was determined to be 80 nM. 相似文献
Since the building of coral reefs results from the association of corals and zooxanthellae, their intracellular algal symbionts, genetic markers for both organisms are essential for studying the contribution of their respective dispersal to the resilience of endangered reef ecosystems. Very few microsatellites have been obtained in corals thus far. Here we report the successful cloning of six polymorphic microsatellites (allele number: 5–15) from Pocillopora verrucosa, P. meandrina and P. damicornis. Four of them amplified coral, and two amplified zooxanthella DNA. 相似文献
In the present work, we propose to design drugs that target the enzyme dihydrofolate redutase (DHFR) as a means of a novel drug therapy against plague. Potential inhibitors of DHFR from Yersinia pestis (YpDHFR) were selected by virtual screening and subjected to docking, molecular dynamics (MD) simulations, and Poisson–Boltzmann surface area method, in order to evaluate their interactions in the active sites of YpDHFR and human DHFR (HssDHFR). The results suggested selectivity for three compounds that were further used to propose the structures of six new potential selective inhibitors for YpDHFR. 相似文献