首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1536篇
  免费   95篇
  国内免费   2篇
  1633篇
  2023年   15篇
  2022年   37篇
  2021年   65篇
  2020年   66篇
  2019年   117篇
  2018年   118篇
  2017年   60篇
  2016年   74篇
  2015年   72篇
  2014年   106篇
  2013年   143篇
  2012年   131篇
  2011年   129篇
  2010年   78篇
  2009年   64篇
  2008年   56篇
  2007年   61篇
  2006年   38篇
  2005年   27篇
  2004年   34篇
  2003年   23篇
  2002年   21篇
  2001年   6篇
  2000年   5篇
  1999年   9篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   2篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1980年   2篇
  1979年   3篇
  1978年   3篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1968年   3篇
  1945年   1篇
排序方式: 共有1633条查询结果,搜索用时 10 毫秒
131.
ISXax1 is a novel insertion sequence belonging to the IS256 and Mutator families. Dot blot, Southern blot, and PCR analyses revealed that ISXax1 is restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and X. axonopodis pv. vesicatoria strains. Directed AFLP also showed that a high degree of polymorphism is associated with ISXax1 insertion in these strains.  相似文献   
132.
Isolates of Cryptosporidium spp. from human and animal hosts in Iran were characterized on the basis of both the 18S rRNA gene and the Laxer locus. Three Cryptosporidium species, C. hominis, C. parvum, and C. meleagridis, were recognized, and zoonotically transmitted C. parvum was the predominant species found in humans.  相似文献   
133.
Aquaporins and aquaglyceroporins form the membrane channels that mediate fluxes of water and small solute molecules into and out of cells. Eukaryotes often use mitogen-activated protein kinase (MAPK) cascades for the intracellular signaling of stress. This study reveals an aquaglyceroporin being destabilized by direct MAPK phosphorylation and also a stress resistance being acquired through this channel loss. Hog1 MAPK is transiently activated in yeast exposed to high, toxic levels of acetic acid. This Hog1 then phosphorylates the plasma membrane aquaglyceroporin, Fps1, a phosphorylation that results in Fps1 becoming ubiquitinated and endocytosed and then degraded in the vacuole. As Fps1 is the membrane channel that facilitates passive diffusional flux of undissociated acetic acid into the cell, this loss downregulates such influx in low-pH cultures, where acetic acid (pKa, 4.75) is substantially undissociated. Consistent with this downregulation of the acid entry generating resistance, sensitivity to acetic acid is seen with diverse mutational defects that abolish endocytic removal of Fps1 from the plasma membrane (loss of Hog1, loss of the soluble domains of Fps1, a T231A S537A double mutation of Fps1 that prevents its in vivo phosphorylation, or mutations generating a general loss of endocytosis of cell surface proteins [doa4Delta and end3Delta]). Remarkably, targetting of Fps1 for degradation may be the major requirement for an active Hog1 in acetic acid resistance, since Hog1 is largely dispensable for such resistance when the cells lack Fps1. Evidence is presented that in unstressed cells, Hog1 exists in physical association with the N-terminal cytosolic domain of Fps1.  相似文献   
134.
As with chromosomal DNA, the mitochondrial DNA (mtDNA) can contain mutations that are highly pathogenic .In fact, many diseases of the central nervous system are known to be caused by mutations in mtDNA. Dysfunction of the mitochondrial Respiratory Chain (RC) has been shown in patients with neurological disease including Alzheimer’s disease (AD), Parkinson’s disease (PD) and Multiple sclerosis (MS). MS is a demyelinating disease of central nervous system characterized by morphological hallmarks of inflammation, demyelination and axonal loss. Considering this importance, we decided to investigate several highly mutative parts of mtDNA for point mutations as MT-LTI (tRNALeucine1(UUA/G)), MT-NDI (NADH Dehydrogenase subunit 1), MT-COII (Cytochrome c oxidase subunit II), MT-TK (tRNALysine), MT-ATP8 (ATP synthase subunit F0 8) and MT-ATP6 (ATP synthase subunit F0 6) in 20 Iranian MS patients and 80 age-matched control subjects by PCR and automated DNA sequencing to evaluate any probable point mutations. Our results revealed that 15 (75%) out of 20 MS patients had point mutations. Some of point mutations were newly found in this study. This study suggested that point mutation occurred in mtDNA might be involved in pathogenesis of MS.  相似文献   
135.
Vertebrate Hox genes act as developmental architects by patterning embryonic structures like axial skeletal elements, limbs, brainstem territories, or neural crest derivatives. While active during the patterning steps of development, these genes turn out to be down-regulated in specific differentiation programs like that leading to chondrogenesis. To investigate why chondrocyte differentiation is correlated to the silencing of a Hox gene, we generated transgenic mice allowing Cre-mediated conditional misexpression of Hoxa2 and induced this gene in Collagen 2 alpha 1-expressing cells committed to enter chondrogenesis. Persistent Hoxa2 expression in chondrogenic cells resulted in overall chondrodysplasia with delayed cartilage hypertrophy, mineralization, and ossification but without proliferation defects. The absence of skeletal patterning anomaly and the regular migration of precursor cells indicated that the condensation step of chondrogenesis was normal. In contrast, closer examination at the differentiation step showed severely impaired chondrocyte differentiation. In addition, this inhibition affected structures independently of their embryonic origin. In conclusion, for the first time here, by a cell-type specific misexpression, we precisely uncoupled the patterning function of Hoxa2 from its involvement in regulating differentiation programs per se and demonstrate that Hoxa2 displays an anti-chondrogenic activity that is distinct from its patterning function.  相似文献   
136.
Heterotrophic microbial decomposers, such as bacteria and fungi, immobilize or mineralize inorganic elements, depending on their elemental composition and that of their organic resource. This fact has major implications for their interactions with other consumers of inorganic elements. We combine the stoichiometric and resource-ratio approaches in a model describing the use by decomposers of an organic and an inorganic resource containing the same essential element, to study its consequences on decomposer interactions and their role in elemental cycling. Our model considers the elemental composition of organic matter and the principle of its homeostasis explicitly. New predictions emerge, in particular, (1) stoichiometric constraints generate a trade-off between the R* values of decomposers for the two resources; (2) they create favorable conditions for the coexistence of decomposers limited by different resources and with different elemental demands; (3) however, combined with conditions on species-specific equilibrium limitation, they draw decomposers toward colimitation by the organic and inorganic resources on an evolutionary time scale. Moreover, we derive the conditions under which decomposers switch from consumption to excretion of the inorganic resource. We expect our predictions to be useful in explaining the community structure of decomposers and their interactions with other consumers of inorganic resources, particularly primary producers.  相似文献   
137.
ISXax1 is a novel insertion sequence belonging to the IS256 and Mutator families. Dot blot, Southern blot, and PCR analyses revealed that ISXax1 is restricted to Xanthomonas axonopodis pv. phaseoli (variants fuscans and non-fuscans) and X. axonopodis pv. vesicatoria strains. Directed AFLP also showed that a high degree of polymorphism is associated with ISXax1 insertion in these strains.  相似文献   
138.
139.
PD98059 and U0126 are organic compound inhibitors frequently used to block the activity of the MEK-1/2 protein kinase. In the present work, promoter activation analyses of xanthine oxidoreductase (XOR) in epithelial cells uncovered the unexpected opposite effect of these inhibitors on activation of XOR. Activation of an XOR-luciferase fusion gene was studied in stably transfected epithelial cells. The XOR reporter gene was activated by the epidermal growth factors (EGF), prolactin, and dexamethasone and by the acute phase cytokines (APC) IL-1, IL-6, and TNFalpha as previously reported for its native gene, and insulin further stimulated activation induced with acute phase cytokines or growth factors. Activation of the proximal promoter was blocked by inhibitors of the glucocorticoid receptor (GR), p38 MAP kinase, and U0126. Unexpectedly, PD98059 activated the promoter and significantly enhanced expression induced by insulin, APC, or growth factors. Analysis of the XOR upstream DNA and proximal promoter revealed primary roles for the GR and STAT3 in mediating the effects of PD98059 on XOR activation and protein complex formation with the promoter. STAT3 phosphotyrosine-705 was rapidly induced by PD98059, dexamethasone, and insulin. XOR activation by PD98059, dexamethasone, or insulin was superinduced by a constitutively active derivative of STAT3, while a dominant negative derivative of STAT3 blocked the enhancing effect of PD98059 on XOR activation. These data demonstrate a previously unrecognized effect of PD98059 on STAT3 and the GR that could have unanticipated consequences when used to infer the involvement of the MEK-1/2 protein kinase.  相似文献   
140.
Dillapiol was isolated from the essential oil of dill as a specific inhibitor of aflatoxin G1 production. It inhibited aflatoxin G1 production by Aspergillus parasiticus with an IC50 value of 0.15 microM without inhibiting aflatoxin B1 production or fungal growth. Apiol and myristicin, congeners of dillapiol, showed similar activity with IC50 values of 0.24 and 3.5 microM, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号