首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2007年   1篇
  2006年   1篇
  2005年   4篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
11.
1. The European soda pans of the Carpathian Basin provide important stopover sites for several waterbird species. We studied the effect of different invertebrate food types and other characteristics on the habitat choice and distribution of birds on 82 pans (in Hungary, Austria and Serbia) during spring migration. 2. Only three environmental variables proved to be significant determinants of the waterbird communities: pan density (spatial effect) along with the density of Arctodiaptomus spp. and anostracans (local effect). Variance partitioning of the data revealed that aquatic invertebrate food supply (Arctodiaptomus and anostracans) had a greater effect than pan density on the 10 investigated bird species, suggesting a dominant role of species sorting in structuring the communities. Pied avocets (Recurvirostra avosetta) and northern shovelers (Anas clypeata) differed from the other species in their strong association with densities of anostracans (avocet) and Arctodiaptomus (shoveler). 3. Anostracans and microcrustaceans, especially the most frequent Branchinecta orientalis, Arctodiaptomus spinosus and Arctodiaptomus bacillifer, can be regarded as keystone elements of this soda pan habitat because of their bottom‐up role in structuring waterbird assemblages during spring migration.  相似文献   
12.
Several unanswered questions remain regarding the taxonomy and phylogeny of inquiline gallwasps (Cynipidae: Synergini), obligate inhabitants of plant galls induced primarily by other gallwasps (Cynipidae: Cynipini and Diplolepidini). Here we use morphological and molecular data to revise the inquiline genus Synophrus, members of which are notable for extensively modifying the structure of galls induced by oak gallwasp hosts on oaks in the section Cerris of Quercus subgenus Quercus in the Western Palaearctic. Previous taxonomic treatments have recognized three Western Palaearctic species of Synophrus: S. pilulae, S. politus and S. olivieri. Our results support the establishment of four additional Western Palaearctic species: Synophrus hungaricus sp.n. , S. libani sp.n. , S. syriacus sp.n. and S. hispanicus sp.n. We describe and diagnose these new taxa, analyse their phylogenetic relationships, and show that Synophrus inquilines are able to impose their own gall phenotypes on those of their hosts. We provide an updated key to Synophrus.  相似文献   
13.
14.
CD spectroscopic studies on protected peptides containing lysine and serine, or phosphoserine, and on serine-containing fragments of the neurofilament protein midsized subunit, both in the unphosphorylated and phosphorylated form, are reported. The introduction of the phosphoryl group was not found to have a significant spectral effect in aqueous solution. In trifluoroethanol (TFE), spectral shifts toward unordered (type U) spectra or the appearance of distorted spectra likely reflect the adoption of aperiodic polypeptide conformations due to salt bridge(s) between negatively charged phosphoserine and positive lysine side-chain groups. A turn-stabilizing effect of phosphorylation was also observed. CD-monitored titration experiments in TFE revealed a high conformational sensitivity of phosphopeptides toward Ca2+ ions. The appearance of the unordered spectra or spectral shifts were the sign of a bulk disordering effect of Ca2+ ions. Spectra with specific spectroscopic features reflect the formation of Ca2+complexes and the adoption of ordered unique backbone conformations. When ordered structures were obtained on addition of Ca2+ ions, the observed CD curves showed a resemblance to the spectrum of β-pleated sheets. This may originate from chain extension and the formation of β-pleated sheet segments fixed by Ca2+ bridges between PO3H groups of adjacent peptide chains. The data clearly show that the effect of the Ca2+ ions is highly specific: the sequence, chain length, presence and distribution of charged side-chain groups, degree and site of phosphorylation, and environmental factors appear to be determining in the process of chain extension or β-sheet formation. © 1993 John Wiley & Sons, Inc.  相似文献   
15.
16.
1. Daily changes in the flight activity of aquatic insects have been investigated in only a few water beetles and bugs. The diel flight periodicity of aquatic insects and the environmental factors governing it are poorly understood. 2. We found that primary aquatic insects belonging to 99 taxa (78 Coleoptera, 21 Heteroptera) fly predominantly in mid‐morning, and/or around noon and/or at nightfall. There appears to be at least four different types of diurnal flight activity rhythm in aquatic insects, characterised by peak(s): (i) in mid‐morning; (ii) in the evening; (iii) both in mid‐morning and the evening; (iv) around noon and again in the evening. These activity maxima are quite general and cannot be explained exclusively by daily fluctuations of air temperature, humidity, wind speed and risks of predation, which are all somewhat stochastic. 3. We found experimental evidence that the proportion (%) P(θ) of reflecting surfaces detectable polarotactically as ‘water’ is always maximal at the lowest (dawn and dusk) and highest (noon) angles of solar elevation (θ) for dark reflectors while P(θ) is maximal at dawn and dusk (low solar elevations) for bright reflectors under clear or partly cloudy skies. 4. From the temporal coincidence between peaks in the diel flight activity of primary aquatic insects and the polarotactic detectability P(θ) of water surfaces we conclude that the optimal times of day for aquatic insects to disperse are the periods of low and high solar elevations θ. The θ‐dependent reflection–polarisation patterns, combined with an appropriate air temperature, clearly explain why polarotactic aquatic insects disperse to new habitats in mid‐morning, and/or around noon and/or at dusk. We call this phenomenon the ‘polarisation sun‐dial’ of dispersing aquatic insects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号