首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6675篇
  免费   418篇
  国内免费   3篇
  7096篇
  2022年   41篇
  2021年   73篇
  2020年   31篇
  2019年   43篇
  2018年   76篇
  2017年   77篇
  2016年   116篇
  2015年   179篇
  2014年   216篇
  2013年   272篇
  2012年   327篇
  2011年   333篇
  2010年   210篇
  2009年   203篇
  2008年   338篇
  2007年   335篇
  2006年   318篇
  2005年   327篇
  2004年   313篇
  2003年   284篇
  2002年   257篇
  2001年   217篇
  2000年   238篇
  1999年   215篇
  1998年   79篇
  1997年   78篇
  1996年   58篇
  1995年   71篇
  1994年   39篇
  1993年   72篇
  1992年   171篇
  1991年   150篇
  1990年   122篇
  1989年   130篇
  1988年   139篇
  1987年   91篇
  1986年   88篇
  1985年   95篇
  1984年   81篇
  1983年   69篇
  1982年   47篇
  1981年   42篇
  1980年   27篇
  1979年   44篇
  1978年   39篇
  1977年   35篇
  1976年   27篇
  1975年   43篇
  1974年   45篇
  1973年   40篇
排序方式: 共有7096条查询结果,搜索用时 0 毫秒
981.
The Pseudomonas aeruginosa -derived alkaline protease (AprA), elastase A (LasA), elastase B (LasB) and protease IV are considered to play an important role in pathogenesis of this organism. Although the sequence analysis of P. aeruginosa genome predicts the presence of several genes encoding other potential proteases in the genome, little has been known about the proteases involving in pathogenesis. Recently, Porphyromonas gingivalis gingipains and Serratia marcescens serralysin have been shown to activate protease-activated receptor 2 (PAR-2), thereby modulating host inflammatory and immune responses. Accordingly, we hypothesized that unknown protease(s) from P. aeruginosa would also modulate such responses through PARs. In this study, we found that P. aeruginosa produces a novel l arge e xo p rotease (LepA) distinct from known proteases such as AprA, LasA, LasB and protease IV. Sequence analysis of LepA showed a molecular feature of the proteins transported by the two-partner secretion pathway. Our results indicated that LepA activates NF-κB-driven promoter through human PAR-1, -2 or -4 and cleaves the peptides corresponding to the tethered ligand region of human PAR-1, -2 and -4 at a specific site with exposure of their tethered ligands. Considered together, these results suggest that LepA would require PARs to modulate various host responses against bacterial infection.  相似文献   
982.
Promoter DNA hypermethylation with gene silencing is a common feature of human cancer, and cancer-prone methylation is believed to be a landmark of tumor suppressor genes (TSG). Identification of novel methylated genes would not only aid in the development of tumor markers but also elucidate the biological behavior of human cancers. We identified several epigenetically silenced candidate TSGs by pharmacologic unmasking of esophageal squamous cell carcinoma (ESCC) cell lines by demethylating agents (5-aza-2'-deoxycitidine and trichostatin A) combined with ESCC expression profiles using expression microarray. HOP/OB1/NECC1 was identified as an epigenetically silenced candidate TSG and further examined for (a) expression status, (b) methylation status, and (c) functional involvement in cancer cell lines. (a) The HOP gene encodes two putative promoters (promoters A and B) associated with two open reading frames (HOPalpha and HOPbeta, respectively), and HOPalpha and HOPbeta were both down-regulated in ESCC independently. (b) Promoter B harbors dense CpG islands, in which we found dense methylation in a cancer-prone manner (55% in tumor tissues by TaqMan methylation-specific PCR), whereas promoter A does not harbor CpG islands. HOPbeta silencing was associated with DNA methylation of promoter B in nine ESCC cell lines tested, and reactivated by optimal conditions of demethylating agents, whereas HOPalpha silencing was not reactivated by such treatments. Forced expression of HOP suppressed tumorigenesis in soft agar in four different squamous cell carcinoma cell lines. More convincingly, RNA interference knockdown of HOP in TE2 cells showed drastic restoration of the oncogenic phenotype. In conclusion, HOP is a putative TSG that harbors tumor inhibitory activity, and we for the first time showed that the final shutdown process of HOP expression is linked to promoter DNA hypermethylation under the double control of the discrete promoter regions in cancer.  相似文献   
983.
Motif-programming is a method for creating artificial proteins by combining functional peptide motifs in a combinatorial manner. This method is particularly well suited for developing liaison molecules that interface between cells and inorganic materials. Here we describe our creation of artificial proteins through the programming of two motifs, a natural cell attachment motif (RGD) and an artificial Ti-binding motif (minTBP-1). The created proteins were found to reversibly bind Ti and to bind MC3T3-E1 osteoblast-like cells. Moreover, although the interaction with Ti was not covalent, the proteins recapitulated several functions of fibronectin, and thus, could serve as an artificial ECM on Ti materials. Because this motif-programming system could be easily extended to create artificial proteins having other biological functions and material specificities, it should be highly useful for application to tissue engineering and regenerative medicine.  相似文献   
984.
Neuronal polarity is initiated by a symmetry-breaking event whereby one out of multiple minor neurites undergoes rapid outgrowth and becomes the axon [1]. Axon formation is regulated by phosphatidylinositol 3-kinase (PI3K)-related signaling elements [2-10] that drive local actin [11] and microtubule reorganization [3, 12], but the upstream signaling circuit that causes symmetry breaking and guarantees the formation of a single axon is not known. Here, we use live FRET imaging in hippocampal neurons and show that the activity of the small GTPase HRas, an upstream regulator of PI3K, markedly increases in the nascent axonal growth cone upon symmetry breaking. This local increase in HRas activity results from a positive feedback loop between HRas and PI3K, locally reinforced by vesicular transport of HRas to the axonal growth cone. Recruitment of HRas to the axonal growth cone is paralleled by a decrease in HRas concentration in the remaining neurites, suggesting that competition for a limited pool of HRas guarantees that only one axon forms. Mathematical modeling demonstrates that local positive feedback between HRas and PI3K, coupled to recruitment of a limited pool of HRas, generates robust symmetry breaking and formation of a single axon in the absence of extrinsic spatial cues.  相似文献   
985.
An apple spermidine synthase (SPDS) gene (MdSPDS1) was verified to encode a functional protein by the complementation of the spe3 yeast mutant, which lacks the SPDS gene. To justify our hypothesis that apple SPDS is involved in abiotic stress responses and to obtain transgenic fruit trees tolerant to abiotic stresses as well, MdSPDS1-over-expressing transgenic European pear (Pyrus communis L. ‘Ballad’) plants were created by Agrobacterium-mediated transformation. A total of 21 transgenic lines showing various spermidine (Spd) titers and MdSPDS1 expression levels were obtained. Selected lines were exposed to salt (150 mM NaCl), osmosis (300 mM mannitol), and heavy metal (500 μM CuSO4) stresses for evaluating their stress tolerances. Transgenic line no. 32, which was revealed to have the highest Spd accumulation and expression level of MdSPDS1, showed the strongest tolerance to these stresses. When growth increments, electrolyte leakage (EL), and values of thiobarbituric acid reactive substances (TBARS) were monitored, line no. 32 showed the lowest growth inhibition and the least increase in EL or TBARS under stress conditions. Spd titers in wild-type and transgenic lines showed diverse changes upon stresses, and these changes were not consistent with the changes in MdSPDS1 expressions. Moreover, there were no differences in the sodium concentration in the shoots between the wild type and line no. 32, whereas the copper concentration was higher in the wild type than in line no. 32. Although the mechanism(s) underlying the involvement of polyamines in stress responses is not known, these results suggest that the over-expression of the SPDS gene substantially increased the tolerance to multiple stresses by altering the polyamine titers in pear. Thus, MdSPDS1-over-expressing transgenic pear plants could be used to improve desert land and/or to repair polluted environments. Xiao-Peng Wen and Xiao-Ming Pang contributed equally to this work.  相似文献   
986.
Three new compounds, 3-hydroxyhericenone F (1), hericenone I (2), and hericenone J (3), were isolated from the mushroom Hericium erinaceum. The structures of 1-3 were determined by the interpretation of spectral data. Compound 1 showed the protective activity against endoplasmic reticulum (ER) stress-dependent Neuro2a cell death, however, compounds 2 and 3 did not.  相似文献   
987.
The in vitro protein import experiment is one of the most important techniques for determining protein localization. For chloroplastic proteins, proteins of interest are incubated with isolated chloroplasts in the presence of energy sources. Radio-labeled proteins synthesized either in vitro or in vivo have been widely used as substrate proteins. Here we report our development of the protein import assay system in which non-radio-labeled proteins, overexpressed in Escherichia coli, were applied. In this system, substrate proteins were designed to carry epitope-tags, thus allowing analysis of imported proteins by SDS-PAGE, followed by immunoblotting to detect these tags. Furthermore, the imported proteins were found to be incorporated into their native form. These observations indicated that recombinant proteins were imported into chloroplasts and folded correctly. Therefore, this assay system could represent another valuable tool for determining protein localization.  相似文献   
988.
Li DY  Inoue H  Takahashi M  Kojima T  Shiraiwa M  Takahara H 《Gene》2008,407(1-2):12-20
Oxysterol-binding protein (OSBP) and its homologues constitute a protein family in many eukaryotes from yeast to humans, which are involved in cellular lipid metabolism, vesicle transport and signal transduction. In this study, we characterized a novel salt-inducible gene for an OSBP-homologue from soybean (Glycine max [L.] Merr.). The soybean OSBP-homologous gene, denoted as G. max OSBP (GmOSBP), encoded a 789 aa putative protein with two characteristic domains; the pleckstrin homology (PH) domain and the ligand-binding (LB) domain, in the N- and C-terminus, respectively. The GmOSBP-PH domain showed localization into/around the nucleus in a transient subcellular localization assay. The phylogenetic relationship of the GmOSBP-LB domain to those in other OSBP-homologues suggested that GmOSBP might bind a lipid molecule(s) different from the ligand-candidates found for the human/yeast OSBP-homologues. The GmOSBP gene was constitutively transcribed in all of the soybean organs examined--root, stem and trifoliate leaf--at low levels and was highly induced in all these organs by high-salt stress (300 mM NaCl). Interestingly, gene expression of GmOSBP was also markedly induced in the senesced soybean cotyledon, which contains high levels of a variety of cellular lipids utilized for energy for germination and as membrane components. Therefore, we suggest that GmOSBP may be involved in some physiological reactions for stress-response and cotyledon senescence in the soybean.  相似文献   
989.
990.
We isolated a temperature-sensitive mutant with a mutation in mviN, an essential gene in Escherichia coli. At the nonpermissive temperature, mviN mutant cells swelled and burst. An intermediate in murein synthesis, polyprenyl diphosphate-N-acetylmuramic acid-(pentapeptide)-N-acetyl-glucosamine, accumulated in mutant cells. These results indicated that MviN is involved in murein synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号