首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1016篇
  免费   40篇
  1056篇
  2022年   11篇
  2021年   20篇
  2020年   6篇
  2019年   8篇
  2018年   11篇
  2017年   18篇
  2016年   31篇
  2015年   34篇
  2014年   54篇
  2013年   59篇
  2012年   71篇
  2011年   78篇
  2010年   45篇
  2009年   52篇
  2008年   67篇
  2007年   76篇
  2006年   57篇
  2005年   56篇
  2004年   61篇
  2003年   56篇
  2002年   68篇
  2001年   7篇
  2000年   5篇
  1999年   13篇
  1998年   13篇
  1997年   6篇
  1996年   8篇
  1995年   8篇
  1994年   6篇
  1993年   5篇
  1992年   7篇
  1991年   5篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   5篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1966年   2篇
排序方式: 共有1056条查询结果,搜索用时 13 毫秒
121.
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates mRNA genesis. It shuttles between the nucleus and cytoplasm. Its shuttling signal is a 38-residue sequence M9. We studied the nuclear import and export of M9 by mutational analysis. Heterokaryon assay indicated that the 19-residue sequence SNFGPMKGGNFGGRSSGPY (M9 core) is necessary and sufficient for shuttling. Moreover, M9 core mutation revealed that in addition to the hitherto characterized N-terminal motif SNFGPMK, the C-terminal motif PY is crucial for nuclear import as well as for binding to transportin. Key residues of the motifs are conserved in the shuttling signals of hnRNP D and JKTBP.  相似文献   
122.
CD82, also known as KAI1, was recently identified as a prostate cancer metastasis suppressor gene on human chromosome 11p1.2 (ref. 1). The product of CD82 is KAI1, a 40- to 75-kDa tetraspanin cell-surface protein also known as the leukocyte cell-surface marker CD82 (refs. 1,2). Downregulation of KAI1 has been found to be clinically associated with metastatic progression in a variety of cancers, whereas overexpression of CD82 specifically suppresses tumor metastasis in various animal models. To define the mechanism of action of KAI1, we used a yeast two-hybrid screen and identified an endothelial cell-surface protein, DARC (also known as gp-Fy), as an interacting partner of KAI1. Our results indicate that the cancer cells expressing KAI1 attach to vascular endothelial cells through direct interaction between KAI1 and DARC, and that this interaction leads to inhibition of tumor cell proliferation and induction of senescence by modulating the expression of TBX2 and p21. Furthermore, the metastasis-suppression activity of KAI1 was significantly compromised in DARC knockout mice, whereas KAI1 completely abrogated pulmonary metastasis in wild-type and heterozygous littermates. These results provide direct evidence that DARC is essential for the function of CD82 as a suppressor of metastasis.  相似文献   
123.
An abscisic acid (ABA)-insensitive Vicia faba mutant, fia (fava bean impaired in ABA-induced stomatal closure) had previously been isolated. In this study, it was investigated how FIA functions in ABA signalling in guard cells of Vicia faba. Unlike ABA, methyl jasmonate (MeJA), H(2)O(2), and nitric oxide (NO) induced stomatal closure in the fia mutant. ABA did not induce production of either reactive oxygen species or NO in the mutant. Moreover, ABA did not suppress inward-rectifying K(+) (K(in)) currents or activate ABA-activated protein kinase (AAPK) in mutant guard cells. These results suggest that FIA functions as an early signal component upstream of AAPK activation in ABA signalling but does not function in MeJA signalling in guard cells of Vicia faba.  相似文献   
124.
Polyethylene (PE) sheets were modified by radiation-induced graft polymerization (RIGP) of an epoxy-group containing monomer glycidyl methacrylate (GMA). The epoxy group of GMA was opened by introducing sodium sulfite (SS) and diethylamine (DEA) as representatives of negatively and positively charged functional groups, respectively. These modified surfaces by RIGP, termed GMA, SS, and DEA sheets, were investigated to elucidate their effects on initial adhesion and subsequent biofilm formation of Escherichia coli. Initial adhesion test revealed that E. coli density and viability were governed by sheet surface electrostatic property: E. coli cell density on the DEA sheet was 23 times higher than that on the SS sheet after 8 h incubation. The viability of E. coli cells dramatically decreased after contact with the DEA sheet, but remained high on the SS sheet. E. coli biofilm structure on the DEA sheet was dense, homogeneous, and uniform, with biomass higher than that of the GMA and SS sheets by factors of 14.0 and 37.5, respectively. On the contrary, biofilm structure on the SS sheet was sparse, heterogeneous, and mushroom-shaped. More than 40% of E. coli biofilm on the DEA sheet was retained under a high liquid shear force condition (5,000 s(-1)), whereas 97% and 100% of biofilms on the GMA and SS sheets were sloughed, indicating that E. coli biofilm robustness depends on surface charge property of the substratum. This suggests that substratum surface fabrication by RIGP may enhance or suppress biofilm formation, a finding with potentially important practical implications.  相似文献   
125.
126.
Lurasidone is a novel antipsychotic agent with high affinity for dopamine D2, 5-hydroxyltryptamine 5-HT2A, and 5-HT7 receptors. Lurasidone has negligible affinity for histamine H1 and muscarinic M1 receptors, which are thought to contribute to side effects such as weight gain, sedation, and worsening of cognitive deficits. Our interests focus on why lurasidone has such high selectivity for only a part of these aminergic G-protein coupled receptors (GPCRs) and the different binding profile from ziprasidone, which has the same benzisothiazolylpiperazine moiety as lurasidone. In order to address these issues, we constructed structural models of lurasidone–GPCR complexes by homology modeling of receptors, exhaustive docking of ligand, and molecular dynamics simulation-based refinement of complexes. This computational study gave reliable structural models for D2, 5-HT2A, and 5-HT7, which had overall structural complementarities with a salt bridge anchor at the center of the lurasidone molecule, but not for H1 and M1 owing to steric hindrance between the norbornane-2,3-dicarboximide and/or cyclohexane part of lurasidone and both receptors. By comparison with the structural models of olanzapine–GPCRs and ziprasidone–GPCRs constructed using the same computational protocols, it was suggested that the bulkiness of the norbornane-2,3-dicarboximide part and the rigidity and the bulkiness of the cyclohexyl linker gave lurasidone high selectivity for the desired aminergic GPCRs. Finally, this structural insight was validated by a binding experiment of the novel benzisothiazolylpiperazine derivatives. This knowledge on the structural mechanism behind the receptor selectivity should help to design new antipsychotic agents with preferable binding profiles, and the established computational protocols realize virtual screening and structure-based drug design for other central nervous system drugs with desired selectivity for multiple targets.  相似文献   
127.
The reaction centers (RCs) from several species of a purple photosynthetic bacterium, Rhodopseudomonas palustris, were first isolated by ammonium-sulfate fractionation of the isolated core complexes, and were successfully purified by anion-exchange and gel-filtration chromatography as well as sucrose-density gradient centrifugation. The RCs were characterized by spectroscopic and biochemical analyses, indicating that they were sufficiently pure and had conserved their redox activity. The pigment composition of the purified RCs was carefully analyzed by LCMS. Significant accumulation of both bacteriochlorophyll(BChl)-a and bacteriopheophytin(BPhe)-a esterified with various isoprenoid alcohols in the 17-propionate groups was shown in RCs for the first time. Moreover, a drastic decrease in BPhe-a with the most dehydrogenated and rigid geranylgeranyl(GG) ester was observed, indicating that BPhe-a in RC preferably took partially hydrogenated and flexible ester groups, i.e. dihydro-GG and tetrahydro-GG in addition to phytyl. Based on the reported X-ray crystal structures of purple bacterial RCs, the meaning of flexibility of the ester groups in BChl-a and BPhe-a as the cofactors of RCs is proposed.  相似文献   
128.
Our objective was to determine whether lipocalin-2 (Lcn2) regulates cardiomyocyte apoptosis, the mechanisms involved, and the functional significance. Emerging evidence suggests that Lcn2 is a proinflammatory adipokine associated with insulin resistance and obesity-related complications, such as heart failure. Here, we used both primary neonatal rat cardiomyocytes and H9c2 cells and demonstrated for the first time that Lcn2 directly induced cardiomyocyte apoptosis, an important component of cardiac remodeling leading to heart failure. This was shown by detection of DNA fragmentation using TUNEL assay, phosphatidylserine exposure using flow cytometry to detect annexin V-positive cells, caspase-3 activity using enzymatic assay and immunofluorescence, and Western blotting for the detection of cleaved caspase-3. We also observed that Lcn2 caused translocation of the proapoptotic protein Bax to mitochondria and disruption of mitochondrial membrane potential. Using transient transfection of GFP-Bax, we confirmed that Lcn2 induced co-localization of Bax with MitoTracker® dye. Importantly, we used the fluorescent probe Phen Green SK to demonstrate an increase in intracellular iron in response to Lcn2, and depleting intracellular iron using an iron chelator prevented Lcn2-induced cardiomyocyte apoptosis. Administration of recombinant Lcn2 to mice for 14 days increased cardiomyocyte apoptosis as well as an acute inflammatory response with compensatory changes in cardiac functional parameters. In conclusion, Lcn2-induced cardiomyocyte apoptosis is of physiological significance and occurs via a mechanism involving elevated intracellular iron levels and Bax translocation.  相似文献   
129.
Plant-cultured cells of Catharanthus roseus converted trans-resveratrol into its 3-O-β-D-glucopyranoside, 4'-O-β-D-glucopyranoside, 3-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside, and 3-O-(6-O-α-L-arabinopyranosyl)-β-D-glucopyranoside. The 3-O-(6-O-β-D-xylopyranosyl)-β-D-glucopyranoside and 3-O-(6-O-α-L-arabinopyranosyl)-β-D-glucopyranoside compounds of trans-resveratrol are both new. Incubation of plant-cultured cells of Ipomoea batatas and Strophanthus gratus with trans-resveratrol gave trans-resveratrol 3-O-β-D-glucopyranoside and trans-resveratrol 4'-O-β-D-glucopyranoside.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号