首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1302篇
  免费   111篇
  国内免费   1篇
  2023年   9篇
  2022年   8篇
  2021年   26篇
  2020年   8篇
  2019年   19篇
  2018年   25篇
  2017年   17篇
  2016年   21篇
  2015年   57篇
  2014年   65篇
  2013年   83篇
  2012年   99篇
  2011年   86篇
  2010年   57篇
  2009年   45篇
  2008年   78篇
  2007年   68篇
  2006年   81篇
  2005年   49篇
  2004年   51篇
  2003年   32篇
  2002年   35篇
  2001年   23篇
  2000年   29篇
  1999年   29篇
  1998年   14篇
  1997年   15篇
  1996年   13篇
  1995年   13篇
  1994年   16篇
  1993年   10篇
  1992年   25篇
  1991年   16篇
  1990年   18篇
  1989年   15篇
  1988年   11篇
  1985年   8篇
  1983年   11篇
  1979年   6篇
  1977年   8篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
  1973年   7篇
  1972年   11篇
  1971年   9篇
  1970年   6篇
  1969年   7篇
  1967年   6篇
  1966年   9篇
排序方式: 共有1414条查询结果,搜索用时 15 毫秒
91.
An in vitro method of growing bacteria as a defined nutrient-depleted biofilm is proposed. The medium was defined nutritionally in terms of the quantitative composition and by the total amount of nutrient required to achieve a defined population size. Escherichia coli and Burkholderia cepacia were incubated on a filter support placed on a defined volume of solid medium. The change of biomass of the biofilm population was compared with the change in a planktonic culture. The size of the population in stationary phase was proportional to the concentration of limiting substrate up to 40 μmol cm−2 glucose for E. coli and up to 2·7 × 10−9 mol cm−2 iron for B. cepacia . Escherichia coli growing exponentially had a growth rate of μ = 0·30 h−1 in a biofilm and μ = 0·96 h−1 in planktonic culture. The growth rate, μ, for exponentially growing B. cepacia in a biofilm was 1·12 h−1 and in planktonic culture 0·78 h−1. This method allows the limitation of the size of a biofilm population to a chosen value.  相似文献   
92.
Methylobacterium sp. ZP24, isolated from a local pond, is able to grow in a medium containing 12 g l−1 lactose as a sole source of carbon, giving 5·25 g l−1 biomass yield and poly-3-hydroxybutyrate (PHB) up to 59% of its dry weight in 40 h. The isolate was also able to utilize cheese whey and produce 1·1 g l−1 PHB. Addition of ammonium sulphate increased the production of PHB from whey 2·5-fold. The potential of Methylobacterium sp. ZP24 in PHB production from cheese whey is discussed.  相似文献   
93.
Epidemiological and laboratory studies have highlighted the potent chemopreventive effectiveness of both dietary selenium and cruciferous vegetables, particularly broccoli. Sulforaphane (SFN), an isothiocyanate, was identified as the major metabolite of broccoli responsible for its anti-cancer properties. An important mechanism for SFN chemoprevention is through the enhancement of glutathione (GSH), the most abundant antioxidant in animals and an important target in chemoprevention. Enhancement of GSH biosynthetic enzymes including the rate-limiting glutamate cysteine ligase (GCL), as well as other Phase II detoxification enzymes results from SFN-mediated induction of the nuclear factor-erythroid 2-related factor 2 (Nrf2)/antioxidant response elements (ARE) signaling pathway. While isothiocyanate compounds such as SFN are among the most potent Nrf2 inducers known, we hypothesized that substitution of sulfur with selenium in the isothiocyanate functional group of SFN would result in an isoselenocyanate compound (SFN-isoSe) with enhanced Nrf2 induction capability. Here we report that SFN-isoSe activated an ARE-luciferase reporter in HepG2 cells more potently than SFN. It was also found that SFN-isoSe induced GCL and GSH in MEF cells in an Nrf2-dependent manner. Finally, we provide evidence that SFN-isoSe was more effective in killing HepG2 cancer cells, yet was less toxic to non-cancer MEF cells, than SFN.These data support our hypothesis, and suggest that SFN-isoSe and potentially other isoselenocyanates may be highly effective chemoprotective agents in vivo due to their ability to induce Nrf2 with low toxicity in normal cells and high efficiency at killing cancer cells.  相似文献   
94.
We describe the formulation of bovine serum albumin nanoparticles (BSA‐NPs) by the coacervation method using surfactants. Plasmids (pUC18, pUC18egfp and pBBR1MCS‐2) isolated from E. coli were incorporated into the BSA matrix by incubating in albumin solution prior to formulation of NPs. Plasmid incorporation was calculated by % yield, entrapment efficiency, DNA loading capacity and release of entrapped DNA by comparing with blank NPs. BSA‐DNA binding studies were carried out by using fluorescence spectroscopy and Fourier Transform Infra Red Spectroscopy (FT‐IR). The surface charge distribution of the NPs loaded with plasmid was calculated using zeta potential. The photoluminescence of BSA‐NPs was quenched when loaded with pDNA, confirming the interaction of DNA with BSA. Altogether, these results provide evidences for the excellent DNA carrying efficiency of BSA‐NPs without loss of plasmid's integrity. The NPs were used to transfect E. coli DH5α strain lacking ampicillin resistance. They, however, showed ampicillin resistance subsequent to transfection with plasmid encoding ampicillin resistance gene. Effect of transfection was confirmed by confocal microscopy and by the isolation of the plasmid by agarose gel electrophoresis from the transfected bacterial culture. This study clearly demonstrates the efficacy of BSA‐NPs as delivery vehicle for pDNA transfection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
95.

Aims

Patients with sickle cell disease have significant morbidity and mortality. Pulmonary hypertension is suggested to be an important contributor but its nature and severity in these patients and how best to non-invasively assess it are controversial. We hypothesised that a high-output state rather than primary pulmonary vascular pathology may be the major abnormality in sickle cell disease. This study aimed to evaluate the characteristics and severity of pulmonary hypertension in patients with sickle cell disease using detailed echocardiography.

Methods and Results

We undertook a prospective study in 122 consecutive stable outpatients with sickle cell disease and 30 age, gender and ethnicity-matched healthy controls. Echocardiographic evaluation included 3D ventricular volumes, sphericity, tissue Doppler, and non-invasive estimation of pulmonary vascular resistance. 36% of patients had a tricuspid regurgitant velocity ≥2.5 m.s-1 but only 2% had elevated pulmonary vascular resistance and the prevalence of right ventricular dysfunction was very low. Patients with raised tricuspid regurgitant velocity had significantly elevated biventricular volumes and globular left ventricular remodelling, related primarily to anaemia. In a subgroup of patients who underwent cardiac catheterization, invasive pulmonary haemodynamics confirmed the echocardiographic findings.

Conclusions

Elevated cardiac output and left ventricular volume overload secondary to chronic anaemia may be the dominant factor responsible for abnormal cardiopulmonary haemodynamics in patients with sickle cell disease. 3D echocardiography with non-invasive estimation of pulmonary vascular resistance represents a valuable approach for initial evaluation of cardiopulmonary haemodynamics in sickle cell disease.  相似文献   
96.

Background

Growing evidence suggests that epigenetic mechanisms of gene regulation may play a role in susceptibilities to specific toxicities and adverse drug reactions. MiRNAs in particular have been shown to be important regulators in cancer and other diseases and show promise as predictive biomarkers for diagnosis and prognosis. In this study, we characterized the global kidney miRNA expression profile in untreated male and female F344 rats throughout the life span. These findings were correlated with sex-specific susceptibilities to adverse renal events, such as male-biased renal fibrosis and inflammation in old age.

Methods

Kidney miRNA expression was examined in F344 rats at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age in both sexes using Agilent miRNA microarrays. Differential expression was determined using filtering criteria of ≥1.5 fold change and ANOVA or pairwise t-test (FDR <5%) to determine significant age and sex effects, respectively. Pathway analysis software was used to investigate the possible roles of these target genes in age- and sex-specific differences.

Results

Three hundred eleven miRNAs were found to be expressed in at least one age and sex. Filtering criteria revealed 174 differentially expressed miRNAs in the kidney; 173 and 34 miRNAs exhibiting age and sex effects, respectively. Principal component analysis revealed age effects predominated over sex effects, with 2-week miRNA expression being much different from other ages. No significant sexually dimorphic miRNA expression was observed from 5 to 8 weeks, while the most differential expression (13 miRNAs) was observed at 21 weeks. Potential target genes of these differentially expressed miRNAs were identified.

Conclusions

The expression of 56% of detected renal miRNAs was found to vary significantly with age and/or sex during the life span of F344 rats. Pathway analysis suggested that 2-week-expressed miRNAs may be related to organ and cellular development and proliferation pathways. Male-biased miRNA expression at older ages correlated with male-biased renal fibrosis and mononuclear cell infiltration. These miRNAs showed high representation in renal inflammation and nephritis pathways, and included miR-214, miR-130b, miR-150, miR-223, miR-142-5p, miR-185, and miR-296*. Analysis of kidney miRNA expression throughout the rat life span will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13293-014-0019-1) contains supplementary material, which is available to authorized users.  相似文献   
97.
Hyaluronan is an oligosaccharide found in the pericellular matrix of numerous cell types and hyaluronan-induced signaling is known to facilitate fibrosis and cancer progression in some tissues. Hyaluronan is also commonly instilled into the eye during cataract surgery to protect the corneal endothelium from damage. Despite this, little is known about the distribution of hyaluronan or its receptors in the normal ocular lens. In this study, hyaluronan was found throughout the mouse lens, with apparently higher concentrations in the lens epithelium. CD44, a major cellular receptor for hyaluronan, is expressed predominately in mouse secondary lens fiber cells born from late embryogenesis into adulthood. Surgical removal of lens fiber cells from adult mice resulted in a robust upregulation of CD44 protein, which preceded the upregulation of α-smooth muscle actin expression typically used as a marker of epithelial–mesenchyma transition in this model of lens epithelial cell fibrosis. Mice lacking the CD44 gene had morphologically normal lenses with a response to lens fiber cell removal similar to wildtype, although they exhibited an increase in cell-associated hyaluronan. Overall, these data suggest that lens cells have a hyaluronan-containing pericellular matrix whose structure is partially regulated by CD44. Further, these data indicate that CD44 upregulation in the lens epithelium may be an earlier marker of lens injury responses in the mouse lens than the upregulation of α-smooth muscle actin.  相似文献   
98.
99.
Cancer treatment and therapy has moved from conventional chemotherapeutics to more mechanism-based targeted approach. Disturbances in the balance of histone acetyltransferase (HAT) and deacetylase (HDAC) leads to a change in cell morphology, cell cycle, differentiation, and carcinogenesis. In particular, HDAC plays an important role in carcinogenesis and therefore it has been a target for cancer therapy. Structurally diverse group of HDAC inhibitors are known. The broadest class of HDAC inhibitor belongs to hydroxamic acid derivatives that have been shown to inhibit both class I and II HDACs. Suberoylanilide hydroxamic acid (SAHA) and Trichostatin A (TSA), which chelate the zinc ions, fall into this group. In particular, SAHA, second generation HDAC inhibitor, is in several cancer clinical trials including solid tumors and hematological malignancy, advanced refractory leukemia, metastatic head and neck cancers, and advanced cancers. To our knowledge, selenium-containing HDAC inhibitors are not reported in the literature. In order to find novel HDAC inhibitors, two selenium based-compounds modeled after SAHA were synthesized. We have compared two selenium-containing compounds; namely, SelSA-1 and SelSA-2 for their inhibitory HDAC activities against SAHA. Both, SelSA-1 and SelSA-2 were potent HDAC inhibitors; SelSA-2 having IC50 values of 8.9 nM whereas SAHA showed HDAC IC50 values of 196 nM. These results provided novel selenium-containing potent HDAC inhibitors.  相似文献   
100.
Two morphine prodrugs (‘PDA’ and ‘PDB’) were synthesized and the kinetics of esterase-mediated morphine release from these prodrugs were determined when incubated with plasma from different animal species. Morphine was rapidly released from PDA by all species plasma with the maximum reached within 5–10 min; the released morphine was biologically active as determined by an in vitro cAMP assay. The morphine was released from PDB at a slower and species-dependent rate (mouse > rat > guinea pig > human). Morphine’s release from PDB appeared to be mediated by carboxyl esterases as the release was inhibited by the carboxyl esterase inhibitor benzil. PDA nor PDB induce cytotoxicity in the neuronal cell lines SK-NSH and SH-SY5Y. The carboxyl and amino functional moieties present on the linker portions of PDA and PDB, respectively, may facilitate their conjugation to nanoparticles to tailor morphine pharmacokinetics and specific targeting. These studies suggest the potential clinical utility of these prodrugs for morphine release at desired rates by administration of their mixture at selected ratios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号