首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   58篇
  2024年   1篇
  2023年   6篇
  2022年   7篇
  2021年   29篇
  2020年   13篇
  2019年   15篇
  2018年   13篇
  2017年   21篇
  2016年   24篇
  2015年   58篇
  2014年   46篇
  2013年   67篇
  2012年   70篇
  2011年   66篇
  2010年   38篇
  2009年   32篇
  2008年   39篇
  2007年   44篇
  2006年   20篇
  2005年   24篇
  2004年   26篇
  2003年   19篇
  2002年   9篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1976年   1篇
排序方式: 共有697条查询结果,搜索用时 234 毫秒
121.
The epididymis relies on transporters for the secretion of nucleosides and influence the disposition of nucleoside analogs (NSA). Since these compounds can cross the blood–testis barrier (BTB), it is important to understand if the epididymis reabsorbs NSA drugs. The purpose of this study is to determine the localization of nucleoside transporters expressed within rat epididymis to demonstrate the potential of epididymal reabsorption. Using immunohistochemistry, we determined that equilibrative nucleoside transporter 1 (ENT1) is localized to the basolateral membrane of epithelial cells, ENT2 is expressed in the nucleus of the epithelium and CNT2 is expressed by basal cells. The expression pattern for these transporters suggests that nucleosides are able to access the epithelial cells of the epididymal duct via the blood, but not from the lumen. We did not find any evidence for a transepithelial reabsorption pathway indicating the NSA drugs that cross the BTB remain within the epididymis.  相似文献   
122.
CD4 T cells are essential for immune control of γ-herpesvirus latency. We previously identified a murine MHC class II-restricted epitope in γ-herpesvirus-68 gp150 (gp150(67-83)I-A(b)) that elicits CD4 T cells that are maintained throughout long-term infection. However, it is unknown whether naive cells can be recruited into the antiviral CD4 T cell pool during latency. In this study, we generate a mouse transgenic for a gp150-specific TCR and show epitope-specific activation of transgenic CD4 T cells during acute and latent infections. Furthermore, although only dendritic cells can stimulate virus-specific CD8 T cells during latency, we show that both dendritic cells and B cells stimulate transgenic CD4 T cells. These studies demonstrate that naive CD4 T cells specific for a viral glycoprotein can be stimulated throughout infection, even during quiescent latency, suggesting that CD4 T cell memory is maintained in part by the continual recruitment of naive cells.  相似文献   
123.
A unique type of vernal pool are those formed on granite outcrops, as the substrate prevents percolation so that water accumulates in depressions when precipitation exceeds evaporation. The O(2) dynamics of small, shallow vernal pools with dense populations of Isoetes australis were studied in situ, and the potential importance of the achlorophyllous leaf bases to underwater net photosynthesis (P(N)) and radial O(2) loss to sediments is highlighted. O(2) microelectrodes were used in situ to monitor pO(2) in leaves, shallow sediments, and water in four vernal pools. The role of the achlorophyllous leaf bases in gas exchange was evaluated in laboratory studies of underwater P(N), loss of tissue water, radial O(2) loss, and light microscopy. Tissue and sediment pO(2) showed large diurnal amplitudes and internal O(2) was more similar to sediment pO(2) than water pO(2). In early afternoon, sediment pO(2) was often higher than tissue pO(2) and although sediment O(2) declined substantially during the night, it did not become anoxic. The achlorophyllous leaf bases were 34% of the surface area of the shoots, and enhanced by 2.5-fold rates of underwater P(N) by the green portions, presumably by increasing the surface area for CO(2) entry. In addition, these leaf bases would contribute to loss of O(2) to the surrounding sediments. Numerous species of isoetids, seagrasses, and rosette-forming wetland plants have a large proportion of the leaf buried in sediments and this study indicates that the white achlorophyllous leaf bases may act as an important area of entry for CO(2), or exit for O(2), with the surrounding sediment.  相似文献   
124.
125.
126.
Efficient DNA repair mechanisms frequently limit the effectiveness of chemotherapeutic agents that act through DNA damaging mechanisms. Consequently, proteins involved in DNA repair have increasingly become attractive targets of high‐throughput screening initiatives to identify modulators of these pathways. Disruption of the XRCC4‐Ligase IV interaction provides a novel means to efficiently halt repair of mammalian DNA double strand break repair; however; the extreme affinity of these proteins presents a major obstacle for drug discovery. A better understanding of the interaction surfaces is needed to provide a more specific target for inhibitor studies. To clearly define key interface(s) of Ligase IV necessary for interaction with XRCC4, we developed a competitive displacement assay using ESI‐MS/MS and determined the minimal inhibitory fragment of the XRCC4‐interacting region (XIR) capable of disrupting a complex of XRCC4/XIR. Disruption of a single helix (helix 2) within the helix‐loop‐helix clamp of Ligase IV was sufficient to displace XIR from a preformed complex. Dose‐dependent response curves for the disruption of the complex by either helix 2 or helix‐loop‐helix fragments revealed that potency of inhibition was greater for the larger helix‐loop‐helix peptide. Our results suggest a susceptibility to inhibition at the interface of helix 2 and future studies would benefit from targeting this surface of Ligase IV to identify modulators that disrupt its interaction with XRCC4. Furthermore, helix 1 and loop regions of the helix‐loop‐helix clamp provide secondary target surfaces to identify adjuvant compounds that could be used in combination to more efficiently inhibit XRCC4/Ligase IV complex formation and DNA repair. Proteins 2014; 82:187–194. © 2013 Wiley Periodicals, Inc.  相似文献   
127.
Individuals with Fanconi anemia (FA) are susceptible to bone marrow failure, congenital abnormalities, cancer predisposition and exhibit defective DNA crosslink repair. The relationship of this repair defect to disease traits remains unclear, given that crosslink sensitivity is recapitulated in FA mouse models without most of the other disease-related features. Mice deficient in Mus81 are also defective in crosslink repair, yet MUS81 mutations have not been linked to FA. Using mice deficient in both Mus81 and the FA pathway protein FancC, we show both proteins cooperate in parallel pathways, as concomitant loss of FancC and Mus81 triggered cell-type-specific proliferation arrest, apoptosis and DNA damage accumulation in utero. Mice deficient in both FancC and Mus81 that survived to birth exhibited growth defects and an increased incidence of congenital abnormalities. This cooperativity of FancC and Mus81 in developmental outcome was also mirrored in response to crosslink damage and chromosomal integrity. Thus, our findings reveal that both pathways safeguard against DNA damage from exceeding a critical threshold that triggers proliferation arrest and apoptosis, leading to compromised in utero development.  相似文献   
128.
129.
130.
Seasonal influenza virus infections cause annual epidemics and sporadic pandemics. These present a global health concern, resulting in substantial morbidity, mortality and economic burdens. Prevention and treatment of influenza illness is difficult due to the high mutation rate of the virus, the emergence of new virus strains and increasing antiviral resistance. Animal models of influenza infection are crucial to our gaining a better understanding of the pathogenesis of and host response to influenza infection, and for screening antiviral compounds. However, the current animal models used for influenza research are not amenable to visualization of host-pathogen interactions or high-throughput drug screening. The zebrafish is widely recognized as a valuable model system for infectious disease research and therapeutic drug testing. Here, we describe a zebrafish model for human influenza A virus (IAV) infection and show that zebrafish embryos are susceptible to challenge with both influenza A strains APR8 and X-31 (Aichi). Influenza-infected zebrafish show an increase in viral burden and mortality over time. The expression of innate antiviral genes, the gross pathology and the histopathology in infected zebrafish recapitulate clinical symptoms of influenza infections in humans. This is the first time that zebrafish embryos have been infected with a fluorescent IAV in order to visualize infection in a live vertebrate host, revealing a pattern of vascular endothelial infection. Treatment of infected zebrafish with a known anti-influenza compound, Zanamivir, reduced mortality and the expression of a fluorescent viral gene product, demonstrating the validity of this model to screen for potential antiviral drugs. The zebrafish model system has provided invaluable insights into host-pathogen interactions for a range of infectious diseases. Here, we demonstrate a novel use of this species for IAV research. This model has great potential to advance our understanding of influenza infection and the associated host innate immune response.KEY WORDS: Influenza, Zebrafish, Virus, Innate immunity  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号