首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3018篇
  免费   273篇
  国内免费   2篇
  2024年   4篇
  2023年   24篇
  2022年   55篇
  2021年   132篇
  2020年   76篇
  2019年   101篇
  2018年   102篇
  2017年   82篇
  2016年   143篇
  2015年   216篇
  2014年   190篇
  2013年   275篇
  2012年   300篇
  2011年   279篇
  2010年   165篇
  2009年   135篇
  2008年   179篇
  2007年   150篇
  2006年   147篇
  2005年   121篇
  2004年   90篇
  2003年   86篇
  2002年   75篇
  2001年   18篇
  2000年   7篇
  1999年   12篇
  1998年   15篇
  1997年   9篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1991年   5篇
  1990年   3篇
  1988年   5篇
  1985年   5篇
  1984年   3篇
  1981年   2篇
  1980年   3篇
  1978年   2篇
  1973年   2篇
  1972年   3篇
  1971年   2篇
  1967年   6篇
  1966年   2篇
  1965年   5篇
  1961年   5篇
  1956年   2篇
  1943年   2篇
  1937年   2篇
  1936年   4篇
排序方式: 共有3293条查询结果,搜索用时 31 毫秒
91.
Infantile myofibromatosis (IM) is the most common benign fibrous tumor of soft tissues affecting young children. By using whole-exome sequencing, RNA sequencing, and targeted sequencing, we investigated germline and tumor DNA in individuals from four distinct families with the familial form of IM and in five simplex IM cases with no previous family history of this disease. We identified a germline mutation c.1681C>T (p.Arg561Cys) in platelet-derived growth factor receptor β (PDGFRB) in all 11 affected individuals with familial IM, although none of the five individuals with nonfamilial IM had mutations in this gene. We further identified a second heterozygous mutation in PDGFRB in two myofibromas from one of the affected familial cases, indicative of a potential second hit in this gene in the tumor. PDGFR-β promotes growth of mesenchymal cells, including blood vessels and smooth muscles, which are affected in IM. Our findings indicate p.Arg561Cys substitution in PDGFR-β as a cause of the dominant form of this disease. They provide a rationale for further investigations of this specific mutation and gene to assess the benefits of targeted therapies against PDGFR-β in aggressive life-threatening familial forms of the disease.  相似文献   
92.
Although evolutionary changes must take place in neural connectivity and synaptic architecture as nervous systems become more complex, we lack understanding of the general principles and specific mechanisms by which these changes occur. Previously, we found that morphology of the larval neuromuscular junction (NMJ) varies extensively among different species of Drosophila but is relatively conserved within a species. To identify specific genes as candidates that might underlie phenotypic differences in NMJ morphology among Drosophila species, we performed a genetic analysis on one of two phenotypic variants we found among 20 natural isolates of Drosophila melanogaster. We discovered genetic polymorphisms for both positive and negative regulators of NMJ growth segregating within the variant line. Focusing on one subline, that displayed NMJ overgrowth, we mapped the phenotype to Mob2 [Monopolar spindle (Mps) one binding protein 2)], a gene encoding a Nuclear Dbf2 (Dumbbell formation 2)-Related (NDR) kinase activator. We confirmed this identification by transformation rescue experiments and showed that presynaptic expression of Mob2 is necessary and sufficient to regulate NMJ growth. Mob2 interacts in a dominant, dose-dependent manner with tricornered but not with warts, to cause NMJ overgrowth, suggesting that Mob2 specifically functions in combination with the former NDR kinase to regulate NMJ development. These results demonstrate the feasibility and utility of identifying genetic variants affecting NMJ morphology in natural populations of Drosophila. These variants can lead to discovery of new genes and molecular mechanisms that regulate NMJ development while also providing new information that can advance our understanding of mechanisms that underlie nervous system evolution.  相似文献   
93.
Peptide therapeutics have traditionally faced many challenges including low bioavailability, poor proteolytic stability and difficult cellular uptake. Conformationally constraining the backbone of a peptide into a macrocyclic ring often ameliorates these problems and allows for the development of a variety of new drugs. Such peptide-based pharmaceuticals can enhance the multi-faceted functionality of peptide side chains, permitting the peptides to bind cellular targets and receptors necessary to impart their role, while protecting them from degrading cellular influences. In the work described here, we developed three cyclic peptides, VP mimic1, VP mimic2 and OT mimic1, which mimic endocrine hormones vasopressin and oxytocin. Making notable changes to the overall structure and composition of the parent hormones, we synthesized the mimics and tested their durability against treatment with three proteases chosen for their specificity: pepsin, alpha-chymotrypsin, and pronase. Vasopressin and oxytocin contain a disulfide linkage leaving them particularly vulnerable to deactivation from the reducing environment inside the cell. Thus, we increased the complexity of our assays by adding reducing agent glutathione to each mixture. Subsequently, we discovered each of our mimics withstood protease treatment with less degradation and/or a slower rate of degradation as compared to both parent hormones and a linear control peptide.  相似文献   
94.
The concept of the halogen bond (or X‐bond) has become recognized as contributing significantly to the specificity in recognition of a large class of halogenated compounds. The interaction is most easily understood as primarily an electrostatically driven molecular interaction, where an electropositive crown, or σ‐hole, serves as a Lewis acid to attract a variety of electron‐rich Lewis bases, in analogous fashion to a classic hydrogen bonding (H‐bond) interaction. We present here a broad overview of X‐bonds from the perspective of a biologist who may not be familiar with this recently rediscovered class of interactions and, consequently, may be interested in how they can be applied as a highly directional and specific component of the molecular toolbox. This overview includes a discussion for where X‐bonds are found in biomolecular structures, and how their structure–energy relationships are studied experimentally and modeled computationally. In total, our understanding of these basic concepts will allow X‐bonds to be incorporated into strategies for the rational design of new halogenated inhibitors against biomolecular targets or toward molecular engineering of new biological‐based materials.  相似文献   
95.
Female mate preferences for ecologically relevant traits may enhance natural selection, leading to rapid divergence. They may also forge a link between mate choice within species and sexual isolation between species. Here, we examine female mate preference for two ecologically important traits: body size and body shape. We measured female preferences within and between species of benthic, limnetic, and anadromous threespine sticklebacks (Gasterosteus aculeatus species complex). We found that mate preferences differed between species and between contexts (i.e., within vs. between species). Within species, anadromous females preferred males that were deep bodied for their size, benthic females preferred larger males (as measured by centroid size), and limnetic females preferred males that were more limnetic shaped. In heterospecific mating trials between benthics and limnetics, limnetic females continued to prefer males that were more limnetic like in shape when presented with benthic males. Benthic females showed no preferences for size when presented with limnetic males. These results show that females use ecologically relevant traits to select mates in all three species and that female preference has diverged between species. These results suggest that sexual selection may act in concert with natural selection on stickleback size and shape. Further, our results suggest that female preferences may track adaptation to local environments and contribute to sexual isolation between benthic and limnetic sticklebacks.  相似文献   
96.
ABCB1, also known as P-glycoprotein (P-gp) or multidrug resistance protein 1 (MDR1), is a membrane-associated multidrug transporter of the ATP-binding cassette (ABC) transporter family. It is one of the most widely studied transporters that enable cancer cells to develop drug resistance. Reliable high-throughput assays that can identify compounds that interact with ABCB1 are crucial for developing new therapeutic drugs. A high-throughput assay for measuring ABCB1-mediated calcein AM efflux was developed using a fluorescent and phase-contrast live cell imaging system. This assay demonstrated the time- and dose-dependent accumulation of fluorescent calcein in ABCB1-overexpressing KB-V1 cells. Validation of the assay was performed with known ABCB1 inhibitors, XR9576, verapamil, and cyclosporin A, all of which displayed dose-dependent inhibition of ABCB1-mediated calcein AM efflux in this assay. Phase-contrast and fluorescent images taken by the imaging system provided additional opportunities for evaluating compounds that are cytotoxic or produce false positive signals. Compounds with known therapeutic targets and a kinase inhibitor library were screened. The assay identified multiple agents as inhibitors of ABCB1-mediated efflux and is highly reproducible. Among compounds identified as ABCB1 inhibitors, BEZ235, BI 2536, IKK 16, and ispinesib were further evaluated. The four compounds inhibited calcein AM efflux in a dose-dependent manner and were also active in the flow cytometry-based calcein AM efflux assay. BEZ235, BI 2536, and IKK 16 also successfully inhibited the labeling of ABCB1 with radiolabeled photoaffinity substrate [125I]iodoarylazidoprazosin. Inhibition of ABCB1 with XR9576 and cyclosporin A enhanced the cytotoxicity of BI 2536 to ABCB1-overexpressing cancer cells, HCT-15-Pgp, and decreased the IC50 value of BI 2536 by several orders of magnitude. This efficient, reliable, and simple high-throughput assay has identified ABCB1 substrates/inhibitors that may influence drug potency or drug-drug interactions and predict multidrug resistance in clinical treatment.  相似文献   
97.
CDK-cyclin complexes regulate centriole duplication and microtubule nucleation at specific cell cycle stages, although their exact roles in these processes remain unclear. As the activities of CDK-cyclins are themselves positively regulated by CDC25 phosphatases, we investigated the role of centrosomal CDC25B during interphase. We report that overexpression of CDC25B, as is commonly found in human cancer, results in a significant increase in centrin 2 at the centrosomes of interphase cells. Conversely, CDC25B depletion causes a loss of centrin 2 from the centrosome, which can be rescued by treatment with the proteasome inhibitor MG132. CDC25B overexpression also promotes the formation of excess centrin 2 “foci”. These foci can accumulate other centrosome proteins, including γ-tubulin and PCM-1, and can function as microtubule organising centres, indicating that these represent functional centrosomes. Formation of centrin 2 foci can be blocked by specific inhibition of CDK2 but not CDK1. CDK2-mediated phosphorylation of Monopolar spindle 1 (Mps1) at the G1/S transition is essential for the initiation of centrosome duplication, and Mps1 is reported to phosphorylate centrin 2. Overexpression of wild-type or non-degradable Mps1 exacerbated the formation of excess centrin 2 foci induced by CDC25B overexpression, while kinase-dead Mps1 has a protective effect. Together, our data suggest that CDC25B, through activation of a centrosomal pool of CDK2, stabilises the local pool of Mps1 which in turn regulates the level of centrin 2 at the centrosome. Overexpression of CDC25B may therefore contribute to tumourigenesis by perturbing the natural turnover of centrosome proteins such as Mps1 and centrin 2, thus resulting in the de novo assembly of extra-numerary centrosomes and potentiating chromosome instability.  相似文献   
98.
The effect of moderate alcohol consumption on liver fibrosis is not well understood, but evidence suggests that adenosine may play a role in mediating the effects of moderate ethanol on tissue injury. Ethanol increases the concentration of adenosine in the liver. Adenosine 2A receptor (A2AR) activation is known to enhance hepatic stellate cell (HSC) activation and A2AR deficient mice are protected from fibrosis in mice. Making use of a novel mouse model of moderate ethanol consumption in which female C57BL/6J mice were allowed continued access to 2% (vol/vol) ethanol (11% calories) or pair-fed control diets for 2 days, 2 weeks or 5 weeks and superimposed with exposure to CCl4, we tested the hypothesis that moderate ethanol consumption increases fibrosis in response to carbon tetrachloride (CCl4) and that treatment of mice with an A2AR antagonist prevents and/or reverses this ethanol-induced increase in liver fibrosis. Neither the expression or activity of CYP2E1, required for bio-activation of CCl4, nor AST and ALT activity in the plasma were affected by ethanol, indicating that moderate ethanol did not increase the direct hepatotoxicity of CCl4. However, ethanol feeding enhanced HSC activation and exacerbated liver fibrosis upon exposure to CCl4. This was associated with an increased sinusoidal angiogenic response in the liver. Treatment with A2AR antagonist both prevented and reversed the ability of ethanol to exacerbate liver fibrosis.

Conclusion

Moderate ethanol consumption exacerbates hepatic fibrosis upon exposure to CCl4. A2AR antagonism may be a potential pharmaceutical intervention to decrease hepatic fibrosis in response to ethanol.  相似文献   
99.
Influenza virus poses a difficult challenge for protective immunity. This virus is adept at altering its surface proteins, the proteins that are the targets of neutralizing antibody. Consequently, each year a new vaccine must be developed to combat the current recirculating strains. A universal influenza vaccine that primes specific memory cells that recognise conserved parts of the virus could prove to be effective against both annual influenza variants and newly emergent potentially pandemic strains. Such a vaccine will have to contain a safe and effective adjuvant that can be used in individuals of all ages. We examine protection from viral challenge in mice vaccinated with the nucleoprotein from the PR8 strain of influenza A, a protein that is highly conserved across viral subtypes. Vaccination with nucleoprotein delivered with a universally used and safe adjuvant, composed of insoluble aluminium salts, provides protection against viruses that either express the same or an altered version of nucleoprotein. This protection correlated with the presence of nucleoprotein specific CD8 T cells in the lungs of infected animals at early time points after infection. In contrast, immunization with NP delivered with alum and the detoxified LPS adjuvant, monophosphoryl lipid A, provided some protection to the homologous viral strain but no protection against infection by influenza expressing a variant nucleoprotein. Together, these data point towards a vaccine solution for all influenza A subtypes.  相似文献   
100.
Salmonella, a ubiquitous Gram-negative intracellular bacterium, is a food borne pathogen that infects a broad range of hosts. Infection with Salmonella Typhimurium in mice is a broadly recognized experimental model resembling typhoid fever in humans. Using a N-ethyl-N-nitrosurea (ENU) mutagenesis recessive screen, we report the identification of Ity16 (Immunity to Typhimurium locus 16), a locus responsible for increased susceptibility to infection. The position of Ity16 was refined on chromosome 8 and a nonsense mutation was identified in the ankyrin 1 (Ank1) gene. ANK1 plays an important role in the formation and stabilization of the red cell cytoskeleton. The Ank1Ity16/Ity16 mutation causes severe hemolytic anemia in uninfected mice resulting in splenomegaly, hyperbilirubinemia, jaundice, extramedullary erythropoiesis and iron overload in liver and kidneys. Ank1Ity16/Ity16 mutant mice demonstrated low levels of hepcidin (Hamp) expression and significant increases in the expression of the growth differentiation factor 15 (Gdf15), erythropoietin (Epo) and heme oxygenase 1 (Hmox1) exacerbating extramedullary erythropoiesis, tissue iron deposition and splenomegaly. As the infection progresses in Ank1Ity16/Ity16, the anemia worsens and bacterial load were high in liver and kidneys compared to wild type mice. Heterozygous Ank1+/Ity16 mice were also more susceptible to Salmonella infection although to a lesser extent than Ank1Ity16/Ity16 and they did not inherently present anemia and splenomegaly. During infection, iron accumulated in the kidneys of Ank1+/Ity16 mice where bacterial loads were high compared to littermate controls. The critical role of HAMP in the host response to Salmonella infection was validated by showing increased susceptibility to infection in Hamp-deficient mice and significant survival benefits in Ank1 +/Ity16 heterozygous mice treated with HAMP peptide. This study illustrates that the regulation of Hamp and iron balance are crucial in the host response to Salmonella infection in Ank1 mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号