全文获取类型
收费全文 | 2923篇 |
免费 | 257篇 |
国内免费 | 2篇 |
专业分类
3182篇 |
出版年
2024年 | 5篇 |
2023年 | 28篇 |
2022年 | 67篇 |
2021年 | 131篇 |
2020年 | 76篇 |
2019年 | 101篇 |
2018年 | 100篇 |
2017年 | 81篇 |
2016年 | 141篇 |
2015年 | 215篇 |
2014年 | 188篇 |
2013年 | 272篇 |
2012年 | 297篇 |
2011年 | 275篇 |
2010年 | 163篇 |
2009年 | 130篇 |
2008年 | 178篇 |
2007年 | 145篇 |
2006年 | 142篇 |
2005年 | 114篇 |
2004年 | 89篇 |
2003年 | 85篇 |
2002年 | 73篇 |
2001年 | 16篇 |
2000年 | 6篇 |
1999年 | 10篇 |
1998年 | 15篇 |
1997年 | 9篇 |
1996年 | 1篇 |
1995年 | 7篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1991年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 3篇 |
1981年 | 1篇 |
1978年 | 1篇 |
1973年 | 1篇 |
1967年 | 1篇 |
1961年 | 1篇 |
排序方式: 共有3182条查询结果,搜索用时 15 毫秒
21.
Megan J. Kelly-Slatten Catherine E. Stewart Malak M. Tfaily Julie D. Jastrow Abigail Sasso Marie-Anne de Graaff 《Global Change Biology Bioenergy》2023,15(5):613-629
Recent studies have indicated that the C4 perennial bioenergy crops switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) accumulate significant amounts of soil carbon (C) owing to their extensive root systems. Soil C accumulation is likely driven by inter- and intraspecific variability in plant traits, but the mechanisms that underpin this variability remain unresolved. In this study we evaluated how inter- and intraspecific variation in root traits of cultivars from switchgrass (Cave-in-Rock, Kanlow, Southlow) and big bluestem (Bonanza, Southlow, Suther) affected the associations of soil C accumulation across soil fractions using stable isotope techniques. Our experimental field site was established in June 2008 at Fermilab in Batavia, IL. In 2018, soil cores were collected (30 cm depth) from all cultivars. We measured root biomass, root diameter, specific root length, bulk soil C, C associated with coarse particulate organic matter (CPOM) and fine particulate organic matter plus silt- and clay-sized fractions, and characterized organic matter chemical class composition in soil using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry. C4 species were established on soils that supported C3 grassland for 36 years before planting, which allowed us to use differences in the natural abundance of stable C isotopes to quantify C4 plant-derived C. We found that big bluestem had 36.9% higher C4 plant-derived C compared to switchgrass in the CPOM fraction in the 0–10 cm depth, while switchgrass had 60.7% higher C4 plant-derived C compared to big bluestem in the clay fraction in the 10–20 cm depth. Our findings suggest that the large root system in big bluestem helps increase POM-C formation quickly, while switchgrass root structure and chemistry build a mineral-bound clay C pool through time. Thus, both species and cultivar selection can help improve bioenergy management to maximize soil carbon gains and lower CO2 emissions. 相似文献
22.
Megan E. Probyn Kylie R. Parsonson Emelie M. G?rdebjer Leigh C. Ward Mary E. Wlodek Stephen T. Anderson Karen M. Moritz 《PloS one》2013,8(3)
Excessive exposure to alcohol prenatally has a myriad of detrimental effects on the health and well-being of the offspring. It is unknown whether chronic low-moderate exposure of alcohol prenatally has similar and lasting effects on the adult offspring’s health. Using our recently developed Sprague-Dawley rat model of 6% chronic prenatal ethanol exposure, this study aimed to determine if this modest level of exposure adversely affects glucose homeostasis in male and female offspring aged up to eight months. Plasma glucose concentrations were measured in late fetal and postnatal life. The pancreas of 30 day old offspring was analysed for β-cell mass. Glucose handling and insulin action was measured at four months using an intraperitoneal glucose tolerance test and insulin challenge, respectively. Body composition and metabolic gene expression were measured at eight months. Despite normoglycaemia in ethanol consuming dams, ethanol-exposed fetuses were hypoglycaemic at embryonic day 20. Ethanol-exposed offspring were normoglycaemic and normoinsulinaemic under basal fasting conditions and had normal pancreatic β-cell mass at postnatal day 30. However, during a glucose tolerance test, male ethanol-exposed offspring were hyperinsulinaemic with increased first phase insulin secretion. Female ethanol-exposed offspring displayed enhanced glucose clearance during an insulin challenge. Body composition and hepatic, muscle and adipose tissue metabolic gene expression levels at eight months were not altered by prenatal ethanol exposure. Low-moderate chronic prenatal ethanol exposure has subtle, sex specific effects on glucose homeostasis in the young adult rat. As aging is associated with glucose dysregulation, further studies will clarify the long lasting effects of prenatal ethanol exposure. 相似文献
23.
24.
Genetic analyses have identified three genes that control the vernalization requirement in wheat and barley; VRN1, VRN2 and FT (VRN3). These genes have now been isolated and shown to regulate not only the vernalization response but also the promotion of flowering by long days. VRN1 is induced by vernalization and accelerates the transition to reproductive development at the shoot apex. FT is induced by long days and further accelerates reproductive apex development. VRN2, a floral repressor, integrates vernalization and day-length responses by repressing FT until plants are vernalized. A comparison of flowering time pathways in cereals and Arabidopsis shows that the vernalization response is controlled by different MADS box genes, but integration of vernalization and long-day responses occurs through similar mechanisms. 相似文献
25.
To investigate whether extrafloral nectar (EFN) increases seed dispersal in Turnera ulmifolia, we measured seed removal on plants with and without EFN. Plants producing EFN had more seeds removed than control plants, suggesting that EFN does play a role in seed dispersal. This is a novel function of EFN. 相似文献
26.
Tom Bennett Geneviève Hines Martin van Rongen Tanya Waldie Megan G. Sawchuk Enrico Scarpella Karin Ljung Ottoline Leyser 《PLoS biology》2016,14(4)
The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS. 相似文献
27.
28.
A conceptual framework for ecosystem stoichiometry: balancing resource supply and demand 总被引:4,自引:0,他引:4
John D. Schade Javier F. Espeleta Christopher A. Klausmeier Megan E. McGroddy Steven A. Thomas Lixia Zhang 《Oikos》2005,109(1):40-51
The development of ecological stoichiometry has centered on organisms and their interactions, with less emphasis on the meaning or value of a comprehensive ecosystem stoichiometry at larger scales. Here we develop a conceptual framework that relates internal processes and exogenous factors in spatially- and temporally-linked ecosystems. This framework emerges from a functional view of ecosystem stoichiometry rooted in understanding the causes and consequences of relative stoichiometric balance, defined as the balance between ratios of resource supply and demand. We begin by modifying a graphical model based on resource ratio competition theory that relates resource supply and demand to ecosystem processes. This approach identified mechanisms, or stoichiometric schemes, through which ecosystems respond to variable resource supply. We expand this view by considering the effects of exogenous factors other then resource supply that comprise a stoichiometric template that influences stoichiometric balance within ecosystems. We then describe a number of examples of patterns in organismal stoichiometry in several types of ecosystems that illustrate stoichiometric schemes and factors that impinge directly on stoichiometric patterns. Next, we conduct an initial analysis of the stoichiometric effects of spatial linkages between ecosystems, and how those relate to boundary dynamics and hot spot development. We conclude by outlining research directions that will significantly advance our understanding of stoichiometric constraints on ecosystem structure and function. 相似文献
29.
The base lesion 8-oxoguanine is formed readily by oxidation of DNA, potentially leading to G → T transversion mutations. Despite the apparent similarity of 8-oxoguanine-cytosine base pairs to normal guanine-cytosine base pairs, cellular base excision repair systems effectively recognize the lesion base. Here we apply several techniques to examine a single 8-oxoguanine lesion at the center of a nonpalindromic 15-mer duplex oligonucleotide in an effort to determine what, if anything, distinguishes an 8-oxoguanine-cytosine (8oxoG-C) base pair from a normal base pair. The lesion duplex is globally almost indistinguishable from the unmodified parent duplex using circular dichroism spectroscopy and ultraviolet melting thermodynamics. The DNA mismatch-detecting photocleavage agent Rh(bpy)(2)chrysi(3+) cleaves only weakly and nonspecifically, revealing that the 8oxoG-C pair is locally stable at the level of the individual base pairs. Nuclear magnetic resonance spectra are also consistent with a well-conserved B-form duplex structure. In the two-dimensional nuclear Overhauser effect spectra, base-sugar and imino-imino cross-peaks are strikingly similar between parent and lesion duplexes. Changes in chemical shift due to the 8oxoG lesion are localized to its complementary cytosine and to the 2-3 bp immediately flanking the lesion on the lesion strand. Residues further removed from the lesion are shown to be unperturbed by its presence. Notably, imino exchange experiments indicate that the 8-oxoguanine-cytosine pair is strong and stable, with an apparent equilibrium constant for opening equal to that of other internal guanine-cytosine base pairs, on the order of 10(-6). This collection of experiments shows that the 8-oxoguanine-cytosine base pair is incredibly stable and similar to the native pair. 相似文献
30.
The mitochondrial DNA of Trypanosoma brucei is organized in a complex structure called the kinetoplast. In this study, we define the complete kinetoplast duplication cycle in T. brucei based on three-dimensional reconstructions from serial-section electron micrographs. This structural model was enhanced by analyses of the replication process of DNA maxi- and minicircles. Novel insights were obtained about the earliest and latest stages of kinetoplast duplication. We show that kinetoplast S phase occurs concurrently with the repositioning of the new basal body from the anterior to the posterior side of the old flagellum. This emphasizes the role of basal body segregation in kinetoplast division and suggests a possible mechanism for driving the rotational movement of the kinetoplast during minicircle replication. Fluorescence in situ hybridization with minicircle- and maxicircle-specific probes showed that maxicircle DNA is stretched out between segregated minicircle networks, indicating that maxicircle segregation is a late event in the kinetoplast duplication cycle. This new view of the complexities of kinetoplast duplication emphasizes the dependencies between the dynamic remodelling of the cytoskeleton and the inheritance of the mitochondrial genome. 相似文献