首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2951篇
  免费   276篇
  国内免费   2篇
  2024年   4篇
  2023年   24篇
  2022年   44篇
  2021年   131篇
  2020年   76篇
  2019年   101篇
  2018年   100篇
  2017年   82篇
  2016年   143篇
  2015年   216篇
  2014年   191篇
  2013年   273篇
  2012年   300篇
  2011年   280篇
  2010年   165篇
  2009年   132篇
  2008年   181篇
  2007年   153篇
  2006年   144篇
  2005年   116篇
  2004年   91篇
  2003年   87篇
  2002年   77篇
  2001年   16篇
  2000年   8篇
  1999年   13篇
  1998年   15篇
  1997年   10篇
  1996年   2篇
  1995年   7篇
  1994年   4篇
  1993年   4篇
  1992年   2篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1981年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1969年   2篇
  1968年   1篇
  1967年   1篇
  1961年   1篇
  1957年   1篇
排序方式: 共有3229条查询结果,搜索用时 15 毫秒
11.
Summary Inhibition of growth and speed of kill by biocides with different mechanisms of action was examined with respect to intracellular glutathione levels. strain deficient in intracellular glutathione was hypersusceptible to electrophilic biocides, with the exception of an isothiazolone biocide. Growth inhibition by quaternary ammonium compounds and radical-generating biocides was unaffected by intracellular glutathione levels. Speed of kill experiments demonstrated a faster rate of killing by formaldehyde in both log and stationary phase cultures of the glutathione-deficient strain as compared to its wild-type parent. Glutathione levels had no effect on the speed of kill by hydrogen peroxide in log phase cultures, but resulted in an increased rate of killing in stationary phase cultures. Stationary phase cultures of the glutathione-deficient strain were killed by a quaternary ammonium biocide at a slower than the glutathione-replete strain. These studies provide information about both the mechanism of action of biocides as well as the role of glutathione in determining microbicide susceptibility.  相似文献   
12.
Warming ocean temperatures have been linked to kelp forest declines worldwide, and elevated temperatures can act synergistically with other local stressors to exacerbate kelp loss. The bull kelp Nereocystis luetkeana is the primary canopy-forming kelp species in the Salish Sea, where it is declining in areas with elevated summer water temperatures and low nutrient concentrations. To determine the interactive effects of these two stressors on microscopic stages of N. luetkeana, we cultured gametophytes and microscopic sporophytes from seven different Salish Sea populations across seven different temperatures (10–22°C) and two nitrogen concentrations. The thermal tolerance of microscopic gametophytes and sporophytes was similar across populations, and high temperatures were more stressful than low nitrogen levels. Additional nitrogen did not improve gametophyte or sporophyte survival at high temperatures. Gametophyte densities were highest between 10 and 16°C and declined sharply at 18°C, and temperatures of 20 and 22°C were lethal. The window for successful sporophyte production was narrower, peaking at 10–14°C. Across all populations, the warmest temperature at which sporophytes were produced was 16 or 18°C, but sporophyte densities were 78% lower at 16°C and 95% lower at 18°C compared to cooler temperatures. In the field, bottom temperatures revealed that the thermal limits of gametophyte growth (18°C) and sporophyte production (16–18°C) were reached during the summer at multiple sites. Prolonged exposure of bull kelp gametophytes to temperatures of 16°C and above could limit reproduction, and therefore recruitment, of adult kelp sporophytes.  相似文献   
13.
Lineage-specific differentiation programs are activated by epigenetic changes in chromatin structure. Melanin-producing melanocytes maintain a gene expression program ensuring appropriate enzymatic conversion of metabolites into the pigment, melanin, and transfer to surrounding cells. During neuroectodermal development, SMARCA4 (BRG1), the catalytic subunit of SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complexes, is essential for lineage specification. SMARCA4 is also required for development of multipotent neural crest precursors into melanoblasts, which differentiate into pigment-producing melanocytes. In addition to the catalytic domain, SMARCA4 and several SWI/SNF subunits contain bromodomains which are amenable to pharmacological inhibition. We investigated the effects of pharmacological inhibitors of SWI/SNF bromodomains on melanocyte differentiation. Strikingly, treatment of murine melanoblasts and human neonatal epidermal melanocytes with selected bromodomain inhibitors abrogated melanin synthesis and visible pigmentation. Using functional genomics, iBRD9, a small molecule selective for the bromodomain of BRD9 was found to repress pigmentation-specific gene expression. Depletion of BRD9 confirmed a requirement for expression of pigmentation genes in the differentiation program from melanoblasts into pigmented melanocytes and in melanoma cells. Chromatin immunoprecipitation assays showed that iBRD9 disrupts the occupancy of BRD9 and the catalytic subunit SMARCA4 at melanocyte-specific loci. These data indicate that BRD9 promotes melanocyte pigmentation whereas pharmacological inhibition of BRD9 is repressive.  相似文献   
14.
Recent studies have indicated that the C4 perennial bioenergy crops switchgrass (Panicum virgatum) and big bluestem (Andropogon gerardii) accumulate significant amounts of soil carbon (C) owing to their extensive root systems. Soil C accumulation is likely driven by inter- and intraspecific variability in plant traits, but the mechanisms that underpin this variability remain unresolved. In this study we evaluated how inter- and intraspecific variation in root traits of cultivars from switchgrass (Cave-in-Rock, Kanlow, Southlow) and big bluestem (Bonanza, Southlow, Suther) affected the associations of soil C accumulation across soil fractions using stable isotope techniques. Our experimental field site was established in June 2008 at Fermilab in Batavia, IL. In 2018, soil cores were collected (30 cm depth) from all cultivars. We measured root biomass, root diameter, specific root length, bulk soil C, C associated with coarse particulate organic matter (CPOM) and fine particulate organic matter plus silt- and clay-sized fractions, and characterized organic matter chemical class composition in soil using high-resolution Fourier-transform ion cyclotron resonance mass spectrometry. C4 species were established on soils that supported C3 grassland for 36 years before planting, which allowed us to use differences in the natural abundance of stable C isotopes to quantify C4 plant-derived C. We found that big bluestem had 36.9% higher C4 plant-derived C compared to switchgrass in the CPOM fraction in the 0–10 cm depth, while switchgrass had 60.7% higher C4 plant-derived C compared to big bluestem in the clay fraction in the 10–20 cm depth. Our findings suggest that the large root system in big bluestem helps increase POM-C formation quickly, while switchgrass root structure and chemistry build a mineral-bound clay C pool through time. Thus, both species and cultivar selection can help improve bioenergy management to maximize soil carbon gains and lower CO2 emissions.  相似文献   
15.
16.
S ly , L.I. & H argreaves , M.H. 1984. Two unusual budding bacteria isolated from a swimming pool. Journal of Applied Bacteriology 56 , 479–486.
Two unusual strains of budding bacteria were isolated on a Millipore Pseudomonas Count Water Tester during routine monitoring of Pseudomonas aeruginosa counts in a swimming pool. The first isolate has been identified as Blastobacter sp. It was a yellow-pigmented, Gram negative rod-shaped organism with a polar holdfast by which it attached to solid surfaces or other cells to form rosettes. The cells reproduced by asymmetric division or budding at the free pole of the cell, producing motile daughter cells with a single polar flagellum. The second isolate, which has not yet been identified, was a red-pigmented, Gram negative rod-shaped organism which produced one or more buds at each pole of the cell. Cell division appears to occur by both binary fission and by budding. Both organisms were strict aerobes, catalase and oxidase positive and did not produce acid from glucose in Hugh and Leifson medium.  相似文献   
17.
The block in the electrogenic H+ efflux produced by protein synthesis inhibitors in corn root tissue can be released or by-passed by addition of fusicoccin or nigericin. The inhibition also lowers cell potential, and the release repolarizes. Associated with the inhibition of H+ efflux is inhibition of K+ influx and the growth of the root tip; fusicoccin partially relieves these inhibitions, but nigericin does not. The inhibition of H+ efflux which arises from blocking the proton channel of the ATPase by oligomycin or N,N′-dicyclohexylcarbodiimide can also be partially relieved by fusicoccin, but not by nigericin; the inhibition produced by diethylstilbestrol is not relieved by fusicoccin.  相似文献   
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号