首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   416篇
  免费   35篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   13篇
  2020年   4篇
  2019年   3篇
  2018年   10篇
  2017年   6篇
  2016年   7篇
  2015年   14篇
  2014年   16篇
  2013年   29篇
  2012年   40篇
  2011年   19篇
  2010年   16篇
  2009年   11篇
  2008年   26篇
  2007年   16篇
  2006年   24篇
  2005年   9篇
  2004年   17篇
  2003年   10篇
  2002年   14篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1974年   11篇
  1971年   4篇
  1969年   4篇
  1968年   2篇
排序方式: 共有452条查询结果,搜索用时 15 毫秒
51.
β-carbolines from various natural and synthetic sources have been known to show diverse biological activities. As a part of our current ongoing project to search for potent natural product-derived anti-leishmanial compounds, we have synthesized a series of substituted 1-aryl-β-carboline derivatives. A total of 22 compounds were synthesized and tested in vitro against Leishmania donovani, out of which 6 compounds (4, 5, 10, 11, 19 and 22) showed notably more activity than the standard miltefosine (IC(50) 12.07±0.82 μM), with compound 4 being the most potent (IC(50) 2.16±0.26 μM).  相似文献   
52.
53.
In most bacteria, Clp protease is a conserved, non-essential serine protease that regulates the response to various stresses. Mycobacteria, including Mycobacterium tuberculosis (Mtb) and Mycobacterium smegmatis, unlike most well studied prokaryotes, encode two ClpP homologs, ClpP1 and ClpP2, in a single operon. Here we demonstrate that the two proteins form a mixed complex (ClpP1P2) in mycobacteria. Using two different approaches, promoter replacement, and a novel system of inducible protein degradation, leading to inducible expression of clpP1 and clpP2, we demonstrate that both genes are essential for growth and that a marked depletion of either one results in rapid bacterial death. ClpP1P2 protease appears important in degrading missense and prematurely terminated peptides, as partial depletion of ClpP2 reduced growth specifically in the presence of antibiotics that increase errors in translation. We further show that the ClpP1P2 protease is required for the degradation of proteins tagged with the SsrA motif, a tag co-translationally added to incomplete protein products. Using active site mutants of ClpP1 and ClpP2, we show that the activity of each subunit is required for proteolysis, for normal growth of Mtb in vitro and during infection of mice. These observations suggest that the Clp protease plays an unusual and essential role in Mtb and may serve as an ideal target for antimycobacterial therapy.  相似文献   
54.
Tuberculosis continues to be a global health threat, making bicyclic nitroimidazoles an important new class of therapeutics. A deazaflavin-dependent nitroreductase (Ddn) from Mycobacterium tuberculosis catalyzes the reduction of nitroimidazoles such as PA-824, resulting in intracellular release of lethal reactive nitrogen species. The N-terminal 30 residues of Ddn are functionally important but are flexible or access multiple conformations, preventing structural characterization of the full-length, enzymatically active enzyme. Several structures were determined of a truncated, inactive Ddn protein core with and without bound F(420) deazaflavin coenzyme as well as of a catalytically competent homolog from Nocardia farcinica. Mutagenesis studies based on these structures identified residues important for binding of F(420) and PA-824. The proposed orientation of the tail of PA-824 toward the N terminus of Ddn is consistent with current structure-activity relationship data.  相似文献   
55.
The bicyclic 4-nitroimidazoles PA-824 and OPC-67683 represent a promising novel class of therapeutics for tuberculosis and are currently in phase II clinical development. Both compounds are pro-drugs that are reductively activated by a deazaflavin (F(420)) dependent nitroreductase (Ddn). Herein we describe the biochemical properties of Ddn including the optimal enzymatic turnover conditions and substrate specificity. The preference of the enzyme for the (S) isomer of PA-824 over the (R) isomer is directed by the presence of a long hydrophobic tail. Nitroimidazo-oxazoles bearing only short alkyl substituents at the C-7 position of the oxazole were reduced by Ddn without any stereochemical preference. However, with bulkier substitutions on the tail of the oxazole, Ddn displayed stereospecificity. Ddn mediated metabolism of PA-824 results in the release of reactive nitrogen species. We have employed a direct chemiluminescence based nitric oxide (NO) detection assay to measure the kinetics of NO production by Ddn. Binding affinity of PA-824 to Ddn was monitored through intrinsic fluorescence quenching of the protein facilitating a turnover-independent assessment of affinity. Our results indicate that (R)-PA-824, despite not being turned over by Ddn, binds to the enzyme with the same affinity as the active (S) isomer. This result, in combination with docking studies in the active site, suggests that the (R) isomer probably has a different binding mode than the (S) with the C-3 of the imidazole ring orienting in a non-productive position with respect to the incoming hydride from F(420). The results presented provide insight into the biochemical mechanism of reduction and elucidate structural features important for understanding substrate binding.  相似文献   
56.
57.
Wajapeyee N  Serra RW  Zhu X  Mahalingam M  Green MR 《Cell》2008,132(3):363-374
Expression of an oncogene in a primary cell can, paradoxically, block proliferation by inducing senescence or apoptosis through pathways that remain to be elucidated. Here we perform genome-wide RNA-interference screening to identify 17 genes required for an activated BRAF oncogene (BRAFV600E) to block proliferation of human primary fibroblasts and melanocytes. Surprisingly, we find a secreted protein, IGFBP7, has a central role in BRAFV600E-mediated senescence and apoptosis. Expression of BRAFV600E in primary cells leads to synthesis and secretion of IGFBP7, which acts through autocrine/paracrine pathways to inhibit BRAF-MEK-ERK signaling and induce senescence and apoptosis. Apoptosis results from IGFBP7-mediated upregulation of BNIP3L, a proapoptotic BCL2 family protein. Recombinant IGFBP7 (rIGFBP7) induces apoptosis in BRAFV600E-positive human melanoma cell lines, and systemically administered rIGFBP7 markedly suppresses growth of BRAFV600E-positive tumors in xenografted mice. Immunohistochemical analysis of human skin, nevi, and melanoma samples implicates loss of IGFBP7 expression as a critical step in melanoma genesis.  相似文献   
58.
The multiple shoots and callus cultures of Vanilla planifolia obtained from the nodal explant on MS medium supplemented with 6-benzylaminopurine (BAP) 2 mg l?1 and α-naphthalene acetic acid (NAA) 2 mg l?1 were maintained by regular subculturing every 30 days and also cultured liquid MS medium of the same hormonal combination. Shoots were transferred to the MS basal medium for rooting. Different explants along with vanilla pods and in vitro cultures were analyzed using HPLC for the presence of vanillin and related compounds. When the amount of these compounds was determined in explants and in in vitro cultures after precursor feeding and curing process, explants showed different profile after precursor feeding and after undergoing curing process. During further investigations we have applied a novel approach for curing in vitro tissues as done for vanilla beans. Curing of in vitro shoots resulted in a significant change in the aromatic compound profile.  相似文献   
59.
60.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号