首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   373篇
  免费   32篇
  国内免费   1篇
  2023年   3篇
  2022年   4篇
  2021年   13篇
  2019年   3篇
  2018年   9篇
  2017年   6篇
  2016年   4篇
  2015年   13篇
  2014年   11篇
  2013年   28篇
  2012年   35篇
  2011年   14篇
  2010年   12篇
  2009年   10篇
  2008年   23篇
  2007年   12篇
  2006年   22篇
  2005年   7篇
  2004年   15篇
  2003年   9篇
  2002年   14篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   5篇
  1994年   3篇
  1993年   3篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   8篇
  1977年   5篇
  1976年   4篇
  1975年   6篇
  1974年   11篇
  1972年   2篇
  1971年   4篇
  1969年   4篇
  1968年   2篇
排序方式: 共有406条查询结果,搜索用时 15 毫秒
91.
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.  相似文献   
92.
Insulin secretion from the pancreatic β-cell is controlled by changes in membrane potential and intracellular Ca(2+). The contribution of intracellular Ca(2+) stores to this process is poorly understood. We have previously shown that β-cells of mice lacking one copy of the Annexin 7 gene (Anx7(+/-)) express reduced levels of IP(3) receptors and defects in IP(3)-dependent Ca(2+) signaling. To further elucidate the effect of the Anx7(+/-) mutation on signaling related to intracellular Ca(2+) stores in the β-cell, we measured the effects of Ca(2+) mobilizing agents on electrical activity, intracellular Ca(2+) and insulin secretion in control and mutant β-cells. We found that the muscarinic agonist carbachol and the ryanodine receptor agonists caffeine and 4-chloro-m-cresol had more potent depolarizing effects on Anx7(+/-) β-cells compared to controls. Accordingly, glucose-induced insulin secretion was augmented to a greater extent by caffeine in mutant islets. Surprisingly, ryanodine receptor-mediated Ca(2+) mobilization was not affected by the Anx7(+/-) mutation, suggesting that the mechanism underlying the observed differences in electrical and secretory responsiveness does not involve intracellular Ca(2+) stores. Our results provide evidence that both IP3 receptors and ryanodine receptors play important roles in regulating β-cell membrane potential and insulin secretion, and that the Anx7(+/-) mutation is associated with alterations in the signaling pathways related to these receptors.  相似文献   
93.
94.
95.
96.
97.
98.
Colorectal cancer still represents one of the most common causes of morbidity and mortality among Western populations. The adenomatous polyposis coli (APC) gene, originally identified as the gene responsible for familial adenomatous polyposis (FAP), an inherited predisposition to multiple colorectal tumors, is now considered as the true "gatekeeper" of colonic epithelial proliferation. It is mutated in the vast majority of sporadic colorectal tumors, and inactivation of both APC alleles occurs at early stages of tumor development in man and mouse. The study of FAP has also led to one of the most consistent genotype-phenotype correlations in hereditary cancer. However, great phenotypic variability is still observed not only among carriers of the identical APC mutation from unrelated families but also from within the same kindred. The generation of several mouse models carrying specific Apc mutations on the same inbred genetic background has confirmed the genotype-phenotype correlations initially established among FAP patients, as well as provided important insights into the mechanisms of colorectal tumor formation. Here we review the major features of the available animal models for FAP and attempt the formulation of a hypothetical model for APC-driven tumorigenesis based on the observed genetic and phenotypic variability in mouse and man.  相似文献   
99.
Garbe D  Doto JB  Sundaram MV 《Genetics》2004,167(2):663-672
Retinoblastoma (Rb)/E2F complexes repress expression of many genes important for G(1)-to-S transition, but also appear to regulate gene expression at other stages of the cell cycle. In C. elegans, lin-35/Rb and other synthetic Multivulva (SynMuv) group B genes function redundantly with other sets of genes to regulate G(1)/S progression, vulval and pharyngeal differentiation, and other unknown processes required for viability. Here we show that lin-35/Rb, efl-1/E2F, and other SynMuv B genes negatively regulate a component of the anaphase-promoting complex or cyclosome (APC/C). The APC/C is a multisubunit complex that promotes metaphase-to-anaphase progression and G(1) arrest by targeting different substrates for ubiquitination and proteasome-mediated destruction. The C. elegans APC/C gene mat-3/APC8 has been defined by temperature-sensitive embryonic lethal alleles that strongly affect germline meiosis and mitosis but only weakly affect somatic development. We describe severe nonconditional mat-3 alleles and a hypomorphic viable allele (ku233), all of which affect postembryonic cell divisions including those of the vulval lineage. The ku233 lesion is located outside of the mat-3 coding region and reduces mat-3 mRNA expression. Loss-of-function alleles of lin-35/Rb and other SynMuv B genes suppress mat-3(ku233) defects by restoring mat-3 mRNA to wild-type levels. Therefore, Rb/E2F complexes appear to repress mat-3 expression.  相似文献   
100.
Prostate tissue-specific gene expression is crucial for driving potentially therapeutic genes to target specifically to the prostate. Prostate secretory protein of 94 amino acids (PSP94), also known as beta-MSP (microseminoprotein), is one of the three most abundant secretory proteins of the prostate gland, and is generally considered to be prostate tissue-specific. We have previously demonstrated that the expression of the rat PSP94 gene is strictly prostate tissue-specific by an antibody against a recombinant rat PSP94. In order to study prostate targeting utilizing the PSP94 gene in a mouse pre-clinical experimental model, we need to establish antibodies against mouse PSP94 to confirm if it is prostate tissue-specific as well. In this study, firstly we raised a polyclonal antibody against a recombinant glutathione-S-transferase- (GST-) mouse mature form of PSP94. However, it showed very poor immunoreactivity against prostate tissue PSP94 as tested in Western blotting experiments. Neither antibodies against rat PSP94 nor mouse PSP94 showed significant cross-reactivity. Thus a second antibody was established against a recombinant mouse mature PSP94 containing N-terminal polyhistidines, and stronger immunoreactivity against mouse prostate tissue PSP94 was identified in Western blotting experiments. Both of these antibodies showed immunohistochemical reactivity, while the latter showed stronger reactivity in IHC when tested with different fixatives. By studying tissue distribution, we demonstrated that, as with rat PSP94, mouse PSP94 is strictly prostate tissue-specific in experiments of both Western blotting and immunohistochemistry (IHC). This conclusion was also derived from a comparison among antibodies against human, rat, and mouse PSP94, showing very different immunoreactivities in Western blotting and IHC. Finally, a competitive assay between different species was performed. We demonstrated that antibodies against PSP94 from different species (human, primate, rodents) have poor cross-reactivities. These observations also indicate that the PSP94 gene is a rapidly evolving gene in all species. Results from this study have led to the possibility of utilizing PSP94 as a targeting agent specifically to the prostate in a mouse experimental model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号