首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   840篇
  免费   75篇
  915篇
  2023年   4篇
  2022年   15篇
  2021年   27篇
  2020年   18篇
  2019年   15篇
  2018年   26篇
  2017年   15篇
  2016年   24篇
  2015年   42篇
  2014年   49篇
  2013年   64篇
  2012年   70篇
  2011年   53篇
  2010年   41篇
  2009年   30篇
  2008年   51篇
  2007年   35篇
  2006年   33篇
  2005年   26篇
  2004年   31篇
  2003年   23篇
  2002年   21篇
  2001年   11篇
  2000年   22篇
  1999年   8篇
  1998年   6篇
  1996年   6篇
  1995年   8篇
  1993年   6篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   4篇
  1985年   3篇
  1984年   8篇
  1983年   5篇
  1982年   4篇
  1981年   3篇
  1979年   14篇
  1978年   7篇
  1977年   4篇
  1975年   8篇
  1974年   7篇
  1973年   5篇
  1972年   5篇
  1971年   4篇
  1970年   6篇
  1969年   3篇
  1960年   3篇
排序方式: 共有915条查询结果,搜索用时 15 毫秒
71.
Despite their importance in many biological processes, membrane proteins are underrepresented in proteomic analysis because of their poor solubility (hydrophobicity) and often low abundance. We describe a novel approach for the identification of plasma membrane proteins and intracellular microsomal proteins that combines membrane fractionation, a centrifugal proteomic reactor for streamlined protein extraction, protein digestion and fractionation by centrifugation, and high performance liquid chromatography-electrospray ionization-tandem MS. The performance of this approach was illustrated for the study of the proteome of ER and Golgi microsomal membranes in rat hepatic cells. The centrifugal proteomic reactor identified 945 plasma membrane proteins and 955 microsomal membrane proteins, of which 63 and 47% were predicted as bona fide membrane proteins, respectively. Among these proteins, >800 proteins were undetectable by the conventional in-gel digestion approach. The majority of the membrane proteins only identified by the centrifugal proteomic reactor were proteins with ≥ 2 transmembrane segments or proteins with high molecular mass (e.g. >150 kDa) and hydrophobicity. The improved proteomic reactor allowed the detection of a group of endocytic and/or signaling receptor proteins on the plasma membrane, as well as apolipoproteins and glycerolipid synthesis enzymes that play a role in the assembly and secretion of apolipoprotein B100-containing very low density lipoproteins. Thus, the centrifugal proteomic reactor offers a new analytical tool for structure and function studies of membrane proteins involved in lipid and lipoprotein metabolism.  相似文献   
72.
2-tert-Butylprimaquine (NP-96) is a novel quinoline anti-malarial compound with superior therapeutic profile than primaquine (PQ). Moreover, it is the first 8-aminoquinoline that is established to be devoid of methemoglobin toxicity. The purpose of the present study was to investigate covalent adduct formation tendency of PQ, NP-96 and their phase I metabolites with glutathione (GSH) and N-acetylcysteine (NAc). For the same, the two compounds were incubated in human and rat liver microsomes in the presence of trapping agents and NADPH. In a control set, NADPH was excluded, while a blank was also studied that was devoid of both NADPH and microsomes. The components in the reaction mixtures were initially separated on a C-18 column (250 mm×4.6mm, 5 μm) using a mobile phase composed of acetonitrile and 10 mM ammonium acetate in a gradient mode. The samples were then subjected to LC-MS(n) and LC-HR-MS analyses, and data were collected in full scan MS, data dependent MS/MS, targeted MS/MS, neutral loss scan (NLS) and accurate mass (MS/TOF) modes. In a significant finding, both PQ and NP-96 themselves showed potential to bind covalently with GSH and NAc, as adducts were observed even in the control and blank incubations. Intense peaks corresponding to covalent adduct of mono-hydroxy metabolite of NP-96 with GSH and NAc were also detected in NADPH supplemented reaction solution.  相似文献   
73.
Rice blast is one of the most devastating diseases affecting the rice crop throughout the world. In molecular breeding for host plant resistance, functional markers are very useful for enhancing the precision and accuracy in marker-assisted selection (MAS) of target gene(s) with minimum effort, time and cost. Pi54 (which was earlier known as Pik h ) is one of the major blast resistance genes and has been observed to show resistance against many isolates of the blast pathogen in India. The gene has been cloned through map-based strategy and encodes a nucleotide-binding site?Cleucine-rich repeat (NBS?CLRR) domain-containing protein. In the present study, we carried out allele mining for this gene and identified a 144-bp insertion/deletion (InDel) polymorphism in the exonic region of the gene. A PCR-based co-dominant molecular marker targeting this InDel, named Pi54 MAS, was developed. Pi54 MAS was observed to perfectly co-segregate with blast resistance in a mapping population with no recombinants. Validation of this marker in 105 genotypes which are either susceptible or resistant to rice blast disease showed that the marker is polymorphic in most of the resistant?Csusceptible genotype combinations and is more accurate than the earlier reported markers for Pi54. Hence this functional, co-dominant marker is suggested for routine deployment in MAS of Pi54 in breeding programs.  相似文献   
74.
Classic cancer research for several decades has focused on understanding the biology of tumor cells in vitro. However, extending these findings to in vivo settings has been impeded owing to limited insights on the impact of microenvironment on tumor cells. We hypothesized that tumor cell biology and treatment response would be more informative when done in the presence of stromal components, like endothelial cells, which exist in the tumor microenvironment. To that end, we have developed a system to grow three-dimensional cultures of GFP-4T1 mouse mammary tumor and 2H11 murine endothelial cells in hanging drops of medium in vitro. The presence of 2H11 endothelial cells in these three-dimensional cocultures was found to sensitize 4T1-GFP tumor cells to chemotherapy (Taxol) and, at the same time, protect cells from ionizing radiation. These spheroidal cultures can also be implanted into the dorsal skinfold window chamber of mice for fluorescence imaging of vascularization and disease progression/treatment response. We observed rapid neovascularization of the tumor-endothelial spheroids in comparison to tumor spheroids grown in nude mice. Molecular analysis revealed pronounced up-regulation of several proangiogenic factors in the tumor tissue derived from the tumor-endothelial spheroids compared with tumor-only spheroids. Furthermore, the rate of tumor growth from tumor-endothelial spheroids in mice was faster than the tumor cell-only spheroids, resulting in greater metastasis to the lung. This three-dimensional coculture model presents an improved way to investigate more pertinent aspects of the therapeutic potential for radiation and/or chemotherapy alone and in combination with antiangiogenic agents.  相似文献   
75.
Hypoxanthine‐guanine‐xanthine phosphoribosyltransference (HGXPRT), a key enzyme in the purine salvage pathway of the malarial parasite, Plasmodium falciparum (Pf), catalyses the conversion of hypoxanthine, guanine, and xanthine to their corresponding mononucleotides; IMP, GMP, and XMP, respectively. Out of the five active site loops (I, II, III, III', and IV) in PfHGXPRT, loop III' facilitates the closure of the hood over the core domain which is the penultimate step during enzymatic catalysis. PfHGXPRT mutants were constructed wherein Trp 181 in loop III' was substituted with Ser, Thr, Tyr, and Phe. The mutants (W181S, W181Y and W181F), when examined for xanthine phosphoribosylation activity, showed an increase in Km for PRPP by 2.1‐3.4 fold under unactivated condition and a decrease in catalytic efficiency by more than 5‐fold under activated condition as compared to that of the wild‐type enzyme. The W181T mutant showed 10‐fold reduced xanthine phosphoribosylation activity. Furthermore, molecular dynamics simulations of WT and in silico W181S/Y/F/T PfHGXPRT mutants bound to IMP.PPi.Mg2+ have been carried out to address the effect of the mutation of W181 on the overall dynamics of the systems and identify local changes in loop III'. Dynamic cross‐correlation analyses show a communication between loop III' and the substrate binding site. Differential cross‐correlation maps indicate altered communication among different regions in the mutants. Changes in the local contacts and hydrogen bonding between residue 181 with the nearby residues cause altered substrate affinity and catalytic efficiency of the mutant enzymes. Proteins 2016; 84:1658–1669. © 2016 Wiley Periodicals, Inc.  相似文献   
76.
77.
78.
We investigated the peptides N-acetyl-AWYIK-amide and N-acetyl-VWYIK-amide corresponding to single amino acid substitutions in LWYIK, a segment found in the gp41 protein of HIV and believed to play a role in sequestering this protein to a cholesterol-rich domain in the membrane. The effects of these peptides on the thermotropic phase transitions of 1-stearoyl-2-oleoylphosphatidylcholine (SOPC) and mixtures of SOPC and cholesterol were intermediate between that having the wild-type sequence (LWYIK) and another (IWYIK), the least active peptide previously studied. This correlated with results from studies of single mutations in the gp41 protein of HIV-1, in which L679 of the LWYIK segment is replaced with either A or V, measuring the capability of TZM-BL HeLa-based HIV-1 indicator cells to form syncytia. The peptides were also comparatively analyzed in silico. All together, the results suggest that the mode of interaction of this region of gp41 with the polar heads of membrane lipids contributes to its cholesterol selectivity and that this is somehow related to the biological activity of the viral glycoprotein.  相似文献   
79.
80.
Actin ring formation is a prerequisite for osteoclast bone resorption. Although gelsolin null osteoclasts failed to exhibit podosomes, actin ring was observed in these osteoclasts. Wiscott-Aldrich syndrome protein (WASP) was observed in the actin ring of gelsolin null osteoclast. Osteoclasts stimulated with osteopontin simulated the effects of Rho and Cdc42 in phosphatidylinositol 4,5-bisphosphate (PIP2) association with WASP as well as formation of podosomes, peripheral microfilopodia-like structures, and actin ring. To explore the potential functions of Rho and Cdc42, TAT-mediated delivery of Rho proteins into osteoclasts was performed. Although Rho and Cdc42 are required for actin ring formation, transduction of either one of the proteins alone is insufficient for this process. Addition of osteopontin to osteoclasts transduced with Cdc42Val12 or transduction of osteoclasts with both RhoVal14 and Cdc42Val12 augments the formation of WASP-Arp2/3 complex and actin ring. Neomycin, an antibiotic, blocked the effects of osteopontin or TAT-RhoVal14 on PIP2 interaction with WASP. WASP distribution was found to be cytosolic in these osteoclasts. Depletion of WASP by short interfering RNA-mediated gene silencing blocked actin polymerization as well as actin ring formation in osteoclasts. These results suggest that Rho-mediated PIP2 interaction with WASP may contribute to the activation and membrane targeting of WASP. Subsequent interaction of Cdc42 and Arp2/3 with WASP may enhance cortical actin polymerization in the process of actin ring formation in osteoclasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号