首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   685篇
  免费   46篇
  2022年   4篇
  2021年   6篇
  2020年   11篇
  2019年   11篇
  2018年   11篇
  2017年   12篇
  2016年   29篇
  2015年   32篇
  2014年   34篇
  2013年   52篇
  2012年   46篇
  2011年   41篇
  2010年   37篇
  2009年   33篇
  2008年   47篇
  2007年   37篇
  2006年   42篇
  2005年   36篇
  2004年   27篇
  2003年   28篇
  2002年   29篇
  2001年   5篇
  2000年   23篇
  1999年   11篇
  1998年   13篇
  1996年   3篇
  1995年   7篇
  1994年   4篇
  1993年   2篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1969年   3篇
  1967年   2篇
  1965年   1篇
  1961年   1篇
  1959年   1篇
排序方式: 共有731条查询结果,搜索用时 15 毫秒
151.
152.
Formation of strand breaks in the DNA ofγ-irradiated chromatin   总被引:1,自引:0,他引:1  
Summary Strand breaks have been determined by sedimentation on sucrose gradients in the DNA of chromatin irradiated after isolation from Chinese hamster lung fibroblasts. The yields of double-strand and single-strand breaks are similar to those found in the DNA of irradiated mammalian cells. Irradiation of isolated chromatin in the presence of the radical scavenger tertiary butanol indicates that at least 65% of single-strand breaks and 56% of double-strand breaks can be attributed to the action of hydroxyl radicals. The results indicate the influence of chromosomal proteins in modifying radiation damage to DNA and suggest that the mechanisms for the induction of strand breaks in the DNA of isolated chromatin may be comparable to those operating in the intact cell.  相似文献   
153.
Vascular endothelial growth factor (VEGF) mediates angiogenic signaling by activating tyrosine kinase receptors. Endothelial cells treated with VEGF are known to increase reactive oxygen species (ROS) production and activate the MAPK pathway. To identify the target proteins of the VEGF receptor, we treated human umbilical vein endothelial cells (HUVECs) with VEGF or H2O2, and identified and semiquantified tyrosine-phosphorylated proteins, combining 2D-gel electrophoresis, Western analysis using antibody against phospho-tyrosine, and mass spectrometry. We detected 95 proteins that were differentially phosphorylated; some were specifically phosphorylated by VEGF but not by H2O2. 2D-gel electrophoresis revealed that heterogeneous populations of the same protein responded differently to H2O2 and VEGF. Bioinformatic studies examining the nature of the differential phosphorylation in various subpopulations of proteins should provide new insights into VEGF- and H2O2-induced signaling pathways.  相似文献   
154.
Angiogenesis is an essential process in physiological and pathological processes and is well-regulated to maintain the cellular homeostasis by balancing the endothelial cells in proliferation and apoptosis. Angiopoietin-1 (Ang1) regulates angiogenesis as a ligand of Tie 2 receptor tyrosine kinase. However, the regulation pathways are not well-understood. To date, only a few of the signaling molecules involved in the Tie 2 receptor tyrosine kinase-mediated angiogenesis have been identified. In this study, we systematically identified tyrosine-phosphorylated proteins in Ang1-induced signaling cascade in human umbilical vein endothelial cells (HUVECs), employing proteomic analyses combining two-dimensional gel electrophoresis, Western analysis using phosphotyrosine antibody and mass spectrometry (MALDI-TOF MS and nanoLC-ESI-q-TOF tandem MS). We report here the identification, semiquantitative analysis, and kinetic changes of tyrosine-phosphorylated proteins in response to Ang1 in HUVECs and identified 66 proteins among 69 protein spots showing significant changes. Of these, p54nrb was validated as a molecule involved in cell migration. These results suggest that Ang1 induces stabilization of neo-vessel network by regulating the phosphorylations of metabolic and structural proteins.  相似文献   
155.

Background

Human growth factor receptor bound protein 7 (Grb7) is an adapter protein that mediates the coupling of tyrosine kinases with their downstream signaling pathways. Grb7 is frequently overexpressed in invasive and metastatic human cancers and is implicated in cancer progression via its interaction with the ErbB2 receptor and focal adhesion kinase (FAK) that play critical roles in cell proliferation and migration. It is thus a prime target for the development of novel anti-cancer therapies. Recently, an inhibitory peptide (G7-18NATE) has been developed which binds specifically to the Grb7 SH2 domain and is able to attenuate cancer cell proliferation and migration in various cancer cell lines.

Results

As a first step towards understanding how Grb7 may be inhibited by G7-18NATE, we solved the crystal structure of the Grb7 SH2 domain to 2.1 Å resolution. We describe the details of the peptide binding site underlying target specificity, as well as the dimer interface of Grb 7 SH2. Dimer formation of Grb7 was determined to be in the μM range using analytical ultracentrifugation for both full-length Grb7 and the SH2 domain alone, suggesting the SH2 domain forms the basis of a physiological dimer. ITC measurements of the interaction of the G7-18NATE peptide with the Grb7 SH2 domain revealed that it binds with a binding affinity of Kd = ~35.7 μM and NMR spectroscopy titration experiments revealed that peptide binding causes perturbations to both the ligand binding surface of the Grb7 SH2 domain as well as to the dimer interface, suggesting that dimerisation of Grb7 is impacted on by peptide binding.

Conclusion

Together the data allow us to propose a model of the Grb7 SH2 domain/G7-18NATE interaction and to rationalize the basis for the observed binding specificity and affinity. We propose that the current study will assist with the development of second generation Grb7 SH2 domain inhibitors, potentially leading to novel inhibitors of cancer cell migration and invasion.  相似文献   
156.
Most plants are resistant to the majority of pathogens. Susceptibility is the exception to the more common state of resistance, i.e., being refractory to infection. However, plant pathogens cause serious economic losses by reducing crop yield and quality. Although such organisms are relatively simple genetic entities, in plants, the mechanisms underlying the generation of disease symptoms and resistance responses are complex and, often, unknown. The study of genes associated with plant-pathogen resistance addresses fundamental questions about the molecular, biochemical, cellular, and physiological means of these interactions. Over the past 10 years, the cloning and analysis of numerous plant resistance genes has led researchers to formulate unifying theories about resistance and susceptibility, and the co-evolution of plant pathogens and their hosts. In this review, we discuss the identification of response genes that have been characterized at the molecular level, as well as their putative links to various signaling pathways. We also summarize the knowledge regarding crosstalk among signaling pathways and plant resistance genes.  相似文献   
157.
Glycan-binding proteins (lectins) are widely expressed in many invertebrates, although the biosynthesis and functions of the lectins are not well understood. Here we report that Manila clam (Ruditapes philippinarum) synthesizes a lectin termed Manila clam lectin (MCL) upon infection with the protozoan parasite Perkinsus olseni. MCL is synthesized in hemocytes as a approximately 74-kDa precursor and secreted into hemolymph where it is converted to 30- and 34-kDa polypeptides. The synthesis of MCL in hemocytes is stimulated by one or more factors in Perkinsus-infected hemolymph, but not directly by Perkinsus itself. MCL can bind to the surfaces of purified hypnospores and zoospores of the parasite, and this binding is inhibitable by either EDTA or GalNAc. Fluorescent beads coated with purified MCL were actively phagocytosed by hemocytes from the clam. Immunohistochemistry showed that secreted MCL is concentrated within cyst-like structures. To define the glycan binding specificity of MCL we examined its binding to an array of biotinylated glycans. MCL recognizes terminal non-reducing beta-linked GalNAc as expressed within the LacdiNAc motif GalNAcbeta1-4GlcNAcbeta1-R and glycans with terminal, non-reducing beta-linked Gal residues. Our results show that the synthesis of MCL is specifically up-regulated upon parasite infection of the clams and may serve as an opsonin through recognition of terminal GalNAc/Gal residues on the parasites.  相似文献   
158.
159.
Paraoxonase1 (PON1), one of HDL-associated antioxidant proteins, is known to lose its activity in vivo systems under oxidative stress. Here, we examined the effect of various oxidants on lactonase activity of PON1, and tried to protect the lactonase activity from oxidative inactivation. Among the oxidative systems tested, the ascorbate/Cu2+ system was the most potent in inactivating the lactonase activity of purified PON1; in contrast to a limited role of Fe2+, Cu2+ (0.05–1.0 µM) remarkably enhanced the inactivation of PON1 in the presence of ascorbate (0.02–0.1 mM). Moreover, Cu2+ alone inhibited the lactonase activity at concentrations as low as 1 µM. The ascorbate/Cu2+-mediated inactivation of PON1 lactonase activity was prevented by catalase, but not general hydroxyl radical scavengers, suggesting the implication of Cu2+-bound hydroxyl radicals in the oxidative inactivation. Compared to arylesterase activity, lactonase activity appears to be more sensitive to Cu2+-catalyzed oxidation. Separately, ascorbate/Cu2+-mediated inactivation of lactonase activity was prevented by oleic acid as well as phoshatidylcholine. Taken together, our data demonstrate that Cu2+-catalyzed oxidation may be a primary factor to cause the decrease of PON1 lactonase activity under oxidative stress and that lactonase activity of PON1 is most susceptible to ascorbate/Cu2+ among PON1 activities. In addition, we have showed that radical-induced inactivation of lactonase activity is prevented by some lipids.  相似文献   
160.
The reaction of (COD)PdCl2 (COD = 1,5-cyclooctadiene) with (3-Py)2SiR1R2 (3-Py = 3-pyridyl; R1 = Ph, R2 = Ph (m-pdps); R1 = Ph, R2 = Me (m-pmps)) in acetone affords single crystals consisting of cyclodimers, [PdCl2((3-Py)2SiR1R2)]2, whereas the same reaction in a mixture of dichloromethane and ethanol yields amorphous spheres consisting of cyclotrimers, [PdCl2((3-Py)2SiR1R2)]3. In a boiling chloroform solution, the cyclodimers are completely converted to cyclotrimers. These cyclotrimers, in the 10−60 °C range, are partly returned to cyclodimers. By contrast, the reaction of (COD)PdCl2 with (3-Py)2SiR1R2 (R1 = Bu, R2 = Me (m-pbms); R1 = dodecyl, R2 = Me (m-pddms)) yields amorphous spheres consisting of cyclotrimers irrespective of solvents. Both [PdCl2(m-pbms)]3 and [PdCl2(m-pddms)]3 are initially cyclotrimers in chloroform, but they exist as a mixture of cyclodimers and cyclotrimers in solution in the 10−60 °C range. The metallacycles tend to form cyclodimers in the order m-pdps > m-pmps > m-pbms > m-pddms. The equilibrium between cyclodimers and the cyclotrimers is sensitive to solvent, temperature, and concentration as well as molecular structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号