首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6488篇
  免费   412篇
  国内免费   1篇
  6901篇
  2023年   28篇
  2022年   60篇
  2021年   91篇
  2020年   77篇
  2019年   84篇
  2018年   133篇
  2017年   101篇
  2016年   182篇
  2015年   265篇
  2014年   353篇
  2013年   493篇
  2012年   567篇
  2011年   497篇
  2010年   327篇
  2009年   281篇
  2008年   420篇
  2007年   371篇
  2006年   369篇
  2005年   324篇
  2004年   338篇
  2003年   338篇
  2002年   311篇
  2001年   68篇
  2000年   61篇
  1999年   62篇
  1998年   61篇
  1997年   57篇
  1996年   57篇
  1995年   46篇
  1994年   60篇
  1993年   43篇
  1992年   41篇
  1991年   30篇
  1990年   23篇
  1989年   21篇
  1988年   20篇
  1987年   16篇
  1986年   12篇
  1985年   16篇
  1984年   15篇
  1983年   24篇
  1982年   15篇
  1981年   28篇
  1980年   22篇
  1979年   15篇
  1977年   18篇
  1976年   6篇
  1975年   7篇
  1974年   9篇
  1973年   6篇
排序方式: 共有6901条查询结果,搜索用时 15 毫秒
41.
Human T cell leukemia virus type 1 (HTLV-1) encodes p13, an 87-amino-acid protein that accumulates in the inner mitochondrial membrane. Recent studies performed using synthetic p13 and isolated mitochondria demonstrated that the protein triggers an inward potassium (K+) current and inner membrane depolarization. The present study investigated the effects of p13 on mitochondrial inner membrane potential (Δψ) in living cells. Using the potential-dependent probe tetramethyl rhodamine methyl ester (TMRM), we observed that p13 induced dose-dependent mitochondrial depolarization in HeLa cells. This effect was abolished upon mutation of 4 arginines in p13's α-helical domain that were previously shown to be essential for its activity in in vitro assays. As Δψ is known to control mitochondrial calcium (Ca2+) uptake, we next analyzed the effect of p13 on Ca2+ homeostasis. Experiments carried out in HeLa cells expressing p13 and organelle-targeted aequorins revealed that the protein specifically reduced mitochondrial Ca2+ uptake. These observations suggest that p13 might control key processes regulated through Ca2+ signaling such as activation and death of T cells, the major targets of HTLV-1 infection.  相似文献   
42.
43.
Cells generate mechanical force to organize the extracellular matrix (ECM) and drive important developmental and reparative processes. Likewise, tumor cells invading into three-dimensional (3D) matrices remodel the ECM microenvironment. Importantly, we previously reported a distinct radial reorganization of the collagen matrix surrounding tumors that facilitates local invasion. Here we describe a mechanism by which cells utilize contractility events to reorganize the ECM to provide contact guidance that facilitates 3D migration. Using novel assays to differentially organize the collagen matrix we show that alignment of collagen perpendicular to the tumor-explant boundary promotes local invasion of both human and mouse mammary epithelial cells. In contrast, organizing the collagen matrix to mimic the ECM organization associated with noninvading regions of tumors suppresses 3D migration/invasion. Moreover, we demonstrate that matrix reorganization is contractility-dependent and that the Rho/Rho kinase pathway is necessary for collagen alignment to provide contact guidance. Yet, if matrices are prealigned, inhibiting neither Rho nor Rho kinase inhibits 3D migration, which supports our conclusion that Rho-mediated matrix alignment is an early step in the invasion process, preceding and subsequently facilitating 3D migration.  相似文献   
44.
45.
Membrane fusion underlies multiple processes, including exocytosis of hormones and neurotransmitters. Membrane fusion starts with the formation of a narrow fusion pore. Radial expansion of this pore completes the process and allows fast release of secretory compounds, but this step remains poorly understood. Here we show that inhibiting the expression of the small GTPase Cdc42 or preventing its activation with a dominant negative Cdc42 construct in human neuroendocrine cells impaired the release process by compromising fusion pore enlargement. Consequently the mode of vesicle exocytosis was shifted from full-collapse fusion to kiss-and-run. Remarkably, Cdc42-knockdown cells showed reduced membrane tension, and the artificial increase of membrane tension restored fusion pore enlargement. Moreover, inhibiting the motor protein myosin II by blebbistatin decreased membrane tension, as well as fusion pore dilation. We conclude that membrane tension is the driving force for fusion pore dilation and that Cdc42 is a key regulator of this force.  相似文献   
46.
47.
48.
Disordered or unstructured regions of proteins, while often very important biologically, can pose significant challenges for resonance assignment and three‐dimensional structure determination of the ordered regions of proteins by NMR methods. In this article, we demonstrate the application of 1H/2H exchange mass spectrometry (DXMS) for the rapid identification of disordered segments of proteins and design of protein constructs that are more suitable for structural analysis by NMR. In this benchmark study, DXMS is applied to five NMR protein targets chosen from the Northeast Structural Genomics project. These data were then used to design optimized constructs for three partially disordered proteins. Truncated proteins obtained by deletion of disordered N‐ and C‐terminal tails were evaluated using 1H‐15N HSQC and 1H‐15N heteronuclear NOE NMR experiments to assess their structural integrity. These constructs provide significantly improved NMR spectra, with minimal structural perturbations to the ordered regions of the protein structure. As a representative example, we compare the solution structures of the full length and DXMS‐based truncated construct for a 77‐residue partially disordered DUF896 family protein YnzC from Bacillus subtilis, where deletion of the disordered residues (ca. 40% of the protein) does not affect the native structure. In addition, we demonstrate that throughput of the DXMS process can be increased by analyzing mixtures of up to four proteins without reducing the sequence coverage for each protein. Our results demonstrate that DXMS can serve as a central component of a process for optimizing protein constructs for NMR structure determination. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
49.
Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings.  相似文献   
50.
We mutated Trp(134) and Tyr(135) of the yeast LMW-PTP to explore their catalytic roles, demonstrating that the mutations of Trp(134) to Tyr or Ala, and Tyr(135) to Ala, all interfere with the formation of the phosphorylenzyme intermediate, a phenomenon that can be seen by the decrease in the kinetic constant of the chemical step (k(3)). Furthermore, we noted that the Trp(134) to Ala mutation causes a dramatic drop in k(cat)/K(m) and a slight enhancement of the dissociation constant K(s). The conservative mutant W134Y shows a k(cat)/K(m) very close to that of wild type, probably compensating the two-fold decrease of k(3) with an increase in substrate affinity. The Y135A mutation enhances the substrate affinity, but reduces the enzyme phosphorylation rate. The replacement of Trp(134) with alanine interferes with the partition between phosphorylenzyme hydrolysis and phosphotransfer from the phosphorylenzyme to glycerol and abolish the enzyme activation by adenine. Finally, we found that mutation of Trp(134) to Ala causes a dramatic change in the pH-rate profile that becomes similar to that of the D132A mutant, suggesting that an aromatic residue in position 134 is necessary to assist the proper positioning of the proton donor in the transition state of the chemical step.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号