首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   19篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   13篇
  2011年   5篇
  2010年   11篇
  2009年   6篇
  2008年   9篇
  2007年   10篇
  2006年   7篇
  2005年   6篇
  2004年   14篇
  2003年   6篇
  2002年   15篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1967年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有170条查询结果,搜索用时 15 毫秒
121.
122.
In higher vertebrates, the paraxial mesoderm undergoes a mesenchymal to epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study, we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. Ectopic expression of Wnt6 leads to sustained expression of markers associated with the epithelial somites and reduced or delayed expression of markers associated with mesenchymally organised somitic tissue. More importantly, we show that Wnt6-producing cells are able to rescue somite formation after ectoderm ablation. Furthermore, injection of Wnt6-producing cells following the isolation of the neural tube/notochord from the segmental plate was able to rescue somite formation at both the structural (epithelialisation) and molecular level, as determined by the expression of marker genes like Paraxis or Pax-3. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists, which result in the segmental plate being unable to form somites. These results show that Wnt6, the only known member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. We propose a model in which the localisation of Wnt6 and its antagonists regulates the process of epithelialisation in the paraxial mesoderm.  相似文献   
123.
The evolutionarily conserved signal recognition particle (SRP) plays an integral role in Sec-mediated cotranslational protein translocation and membrane protein insertion, as it has been shown to target nascent secretory and membrane proteins to the bacterial and eukaryotic translocation pores. However, little is known about its function in archaea, since characterization of the SRP in this domain of life has thus far been limited to in vitro reconstitution studies of heterologously expressed archaeal SRP components identified by sequence comparisons. In the present study, the genes encoding the SRP54, SRP19, and 7S RNA homologs (hv54h, hv19h, and hv7Sh, respectively) of the genetically and biochemically tractable archaeon Haloferax volcanii were cloned, providing the tools to analyze the SRP in its native host. As part of this analysis, an hv54h knockout strain was created. In vivo characterization of this strain revealed that the archaeal SRP is required for viability, suggesting that cotranslational protein translocation is an essential process in archaea. Furthermore, a method for the purification of this SRP employing nickel chromatography was developed in H. volcanii, allowing the successful copurification of (i) Hv7Sh with a histidine-tagged Hv54h, as well as (ii) Hv54h and Hv7Sh with a histidine-tagged Hv19h. These results provide the first in vivo evidence that these components interact in archaea. Such copurification studies will provide insight into the significance of the similarities and differences of the protein-targeting systems of the three domains of life, thereby increasing knowledge about the recognition of translocated proteins in general.  相似文献   
124.
125.
126.
127.
A healthy vascular endothelium is coated by the endothelial glycocalyx. Its main constituents are transmembrane syndecans and bound heparan sulphates. This structure maintains the physiological endothelial permeability barrier and prevents leukocyte and platelet adhesion, thereby mitigating inflammation and tissue oedema. Heparinase, a bacterial analogue to heparanase, is known to attack the glycocalyx. However, the exact extent and specificity of degradation is unresolved. We show by electron microscopy, immunohistological staining and quantitative measurements of the constituent parts, that heparinase selectively sheds heparan sulphate from the glycocalyx, but not the syndecans.  相似文献   
128.
Summary Oligophrenia, ichthyosis, and spastic di-or tetraplegia are the main symptoms of Sjögren-Larsson syndrome. This syndrome, first described in 1957 by two Swedish psychiatrists, has so far been observed in some 100 cases. Three further cases, observed in one family, are reported.
Zusammenfassung Schwachsinn, Ichthyose der Haut und spastische Di-oder Tetraplegie sind die Hauptsymptome des Sjögren-Larsson Syndroms. Als klinische Entität wurde dieses Krankheitsbild 1957 von zwewei schwedischen Psychiatern an Hand von 27 Fällen erstmalig zusammengefaßt. Bis heute sind etwas mehr als 100 Kasuistiken in der Weltliteratur beschrieben. Es wird über 3 weitere Beobachtungen in einer Familie berichtet und auf die Diagnostik und die Aussage für eine genetische Beratung gesunder Geschwister eingegangen.


Mit Unterstützung des Bundesgesundheitsministeriums und der Stiftung Volkswagenwerk.  相似文献   
129.
Seed development largely depends on the long‐distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source‐to‐sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this ‘Push‐and‐Pull’ approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source‐to‐sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1‐overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild‐type plants. Together, the results demonstrate that the SUT1‐overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Pushand‐Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.  相似文献   
130.
The apocrine secretory mechanism is a mode of secretion by which the apical part of the cell cytoplasm is pinched off, which leads to the formation of an aposome. The distinct mechanism of formation and decapitation of the aposome is not well investigated. Only few proteins are known that are involved in this secretory mechanism. We studied the human axillary apocrine gland and looked at proteins associated with cytokinesis, a process that is comparable to the pinching-off mechanism of apocrine glandular cells. By immunohistochemistry, we detected actin, myosin II, cytokeratin 7 and 19, α- and β-tubulin, anillin, cofilin, syntaxin 2, vamp8/endobrevin and septin 2. In highly active glandular cells, these proteins are located at the base of the apical protrusion when the aposome is in the process of being released or are concentrated in the cap of the apical protrusion. These findings demonstrate new insights on apocrine secretory mechanisms and point to similarities to the terminal step of cytokinesis, which is regulated by a SNARE-mediated membrane fusion event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号