首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   19篇
  173篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   4篇
  2013年   6篇
  2012年   13篇
  2011年   5篇
  2010年   11篇
  2009年   6篇
  2008年   9篇
  2007年   10篇
  2006年   7篇
  2005年   6篇
  2004年   14篇
  2003年   6篇
  2002年   15篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   4篇
  1977年   2篇
  1975年   2篇
  1973年   2篇
  1967年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
41.
We determined the ridge-counts and their correlations of interdigital area a-b, b-c, and c-d among 300 boys and 300 girls from Jena and 95 male and 79 female cerebrally damaged chidren from the Mental Hospital of Stadroda, both in Thuringia, G.D.R. (East Germany). The mean values of the normals and the patients differ significantly only on the right hand of males in the b-c area (p ≤ 5%). Bimanuar comparisons showed significant correlations in the three areas in both sexes in the normal and the abnormal children. Inter-area comparisons revealed no significant correlation between a-b and b-c areas; correlations were significant between a-b and c-d areas in both sexes in the normal group, but significant for the right hand only in cerebrally damaged children. Highly significant correlation was found between the b-c and c-d areas only in the right hand of female cerebrally damaged children. Comparative data from Bavaria and North-Rhine-Westfalia are also presented.  相似文献   
42.
An enzyme with carbohydrate-releasing activity (CRA) plays a key role in the release of the mature autospores of Chorella fusca Shihira et Krauss var. vacuolata SAG 211-8B. CRA liberates oligomeric carbohydrates from isolated sprorangia walls and furthermore splits p -nitrophenyl-β- d -fucopyranoside. Observations on mixotrophically cultivated C. fusca and on isolated CRA indicated that in vitro the β- d -fucosidase activity is inhibited by glucose. In vivo glucose induces the well-known gigantism of the algal cells by blocking sporulation, and this leads to the formation of giant sporangia containing up to 128 spores. Glucose and fucose were the only inhibitors of CRA isolated from the homogenate of C. fusca cells.  相似文献   
43.
Glycosylation is one of the most complex posttranslational protein modifications. Its importance has been established not only for eukaryotes but also for a variety of prokaryotic cellular processes, such as biofilm formation, motility, and mating. However, comprehensive glycoproteomic analyses are largely missing in prokaryotes. Here, we extend the phenotypic characterization of N-glycosylation pathway mutants in Haloferax volcanii and provide a detailed glycoproteome for this model archaeon through the mass spectrometric analysis of intact glycopeptides. Using in-depth glycoproteomic datasets generated for the wild-type (WT) and mutant strains as well as a reanalysis of datasets within the Archaeal Proteome Project (ArcPP), we identify the largest archaeal glycoproteome described so far. We further show that different N-glycosylation pathways can modify the same glycosites under the same culture conditions. The extent and complexity of the Hfx. volcanii N-glycoproteome revealed here provide new insights into the roles of N-glycosylation in archaeal cell biology.

A comprehensive glycoproteomic analysis of Haloferax volcanii reveals the extent and complexity of glycosylation in archaea and provides new insights into the roles of this post-translational modification in various cellular processes, including cell shape determination.  相似文献   
44.
Nodulated legumes receive their nitrogen via nitrogen-fixing rhizobia, which exist in a symbiotic relationship with the root system. In tropical legumes like French bean (Phaseolus vulgaris) or soybean (Glycine max), most of the fixed nitrogen is used for synthesis of the ureides allantoin and allantoic acid, the major long-distance transport forms of organic nitrogen in these species. The purpose of this investigation was to identify a ureide transporter that would allow us to further characterize the mechanisms regulating ureide partitioning in legume roots. A putative allantoin transporter (PvUPS1) was isolated from nodulated roots of French bean and was functionally characterized in an allantoin transport-deficient yeast mutant showing that PvUPS1 transports allantoin but also binds its precursors xanthine and uric acid. In beans, PvUPS1 was expressed throughout the plant body, with strongest expression in nodulated roots, source leaves, pods, and seed coats. In roots, PvUPS1 expression was dependent on the status of nodulation, with highest expression in nodules and roots of nodulated plants compared with non-nodulated roots supplied with ammonium nitrate or allantoin. In situ RNA hybridization localized PvUPS1 to the nodule endodermis and the endodermis and phloem of the nodule vasculature. These results strengthen our prediction that in bean nodules, PvUPS1 is involved in delivery of allantoin to the vascular bundle and loading into the nodule phloem.  相似文献   
45.
The question was investigated whether an insectivorous bird when hungry can form the concept of bilateral symmetry which might enable it to detect resting prey proficiently. Eight great tits of both sexes were trained in four experiments with insects as reward to discriminate either between a pair of figures that differed only in terms of the presence of bilateral symmetry (symmetric—asymmetric), or simultaneously between pairs of figures that were both symmetric (symmetric—symmetric) or not (symmetric—asymmetric). Symmetry concept formation was demonstrated in some of the Ss by a) generalization tests and b) a better performance with symmetric-asymmetric pairs as compared to symmetric—symmetric pairs. While one S attended to symmetry regardless of the orientation of the symmetry axis, another probably did not.  相似文献   
46.
Secreted lysosomal cysteine proteases (cathepsins) are involved in degradation and remodeling of the extracellular matrix, thus contributing to cell adhesion and migration. Among the eleven human lysosomal cysteine proteases, only procathepsin X contains an RGD motif located in a highly exposed region of the propeptide, which may allow binding of the proenzyme to RGD-recognizing integrins. Here, we have tested procathepsin X for cell-adhesive properties and found that it supports integrin alpha(v)beta(3)-dependent attachment and spreading of human umbilical vein endothelial cells. Using site-directed mutants of procathepsin X, we proved that this effect is mediated by the RGD sequence within the proregion of the protease. Endogenous procathepsin X is transported to the plasma membrane, accumulates in vesicles at lamellipodia of the human umbilical vein endothelial cell, and is partly associated with the cell surface, as shown by immunofluorescence. In addition, procathepsin X is partly co-localized with integrin beta(3), as detected by immunogold electron microscopy. A direct interaction between endogenous procathepsin X and alpha(v)beta(3) was demonstrated by co-immunoprecipitation. Moreover, surface plasmon resonance analysis revealed significant and RGD-dependent binding of procathepsin X to integrin alpha(v)beta(3). Our results provide for the first time evidence that the extracellular function of cathepsin X may include binding to integrins thereby modulating the attachment of migrating cells to ECM components.  相似文献   
47.
Alterations in total body sodium (TBSodium) that covered the range from moderate deficit to large surplus were induced by 10 experimental protocols in 66 dogs to study whether large amounts of Na+ are stored in an osmotically inactive form during Na+ retention. Changes in TBSodium, total body potassium (TBPotassium), and total body water (TBWater) were determined by 4-day balance studies. A rather close correlation was found between individual changes in TBSodium and those in TBWater (r2 = 0.83). Changes in TBSodium were often accompanied by changes in TBPotassium. Taking changes of both TBSodium and TBPotassium into account, the correlation with TBWater changes became very close (r2 = 0.93). The sum of changes in TBSodium and TBPotassium was accompanied by osmotically adequate TBWater changes, and plasma osmolality remained unchanged. Calculations reveal that even moderate TBSodium changes often included substantial Na+/K+ exchanges between extracellular and cellular space. The results support the theory that osmocontrol effectively adjusts TBWater to the body's present content of the major cations, Na+ and K+, and do not support the notion that, during Na+ retention, large portions of Na+ are stored in an osmotically inactive form. Furthermore, the finding that TBSodium changes are often accompanied by TBPotassium changes and also include Na+/K+ redistributions between fluid compartments suggests that cells may serve as readily available Na+ store. This Na+ storage, however, is osmotically active, since osmotical equilibration is achieved by opposite redistribution of K+.  相似文献   
48.
Intracellular binding proteins can be applied as research tools for target validation and study of protein function in cells and potentially as therapeutics. The success of intracellular binding reagents depends on their affinity and specificity for target molecules, although their stability and functionality in the intracellular environment actually determine their usefulness for such application. Alternative binding proteins derived from scaffolds devoid of disulfide bonds are well suited for intracellular use, as their folding and stability are usually not impaired under reducing conditions. Here, we describe the generation of intracellular binding reagents called Affilin, based on the human γB-crystallin scaffold. The target was human papillomavirus E7 protein implicated in the development of cervical cancer. E7 binders were selected from the combinatorial γB-crystallin library by conventional phage display technique. Affilin variants specifically bound the E7 protein with affinities in the nanomolar range. Intracellular expression of Affilin molecules in E7-positive cells led to inhibition of cellular proliferation. The effect was specific, as the growth of E7-negative cells or cells expressing the wild-type γB-crystallin scaffold remained unaffected. These results demonstrate that the γB-crystallin scaffold allows the de novo generation of alternative binding proteins, which are suitable for intracellular applications as they retain their functionality in the reducing environment of mammalian cells.  相似文献   
49.
ZBP1 regulates mRNA stability during cellular stress   总被引:1,自引:0,他引:1       下载免费PDF全文
An essential constituent of the integrated stress response (ISR) is a reversible translational suppression. This mRNA silencing occurs in distinct cytoplasmic foci called stress granules (SGs), which transiently associate with processing bodies (PBs), typically serving as mRNA decay centers. How mRNAs are protected from degradation in these structures remains elusive. We identify that Zipcode-binding protein 1 (ZBP1) regulates the cytoplasmic fate of specific mRNAs in nonstressed cells and is a key regulator of mRNA turnover during the ISR. ZBP1 association with target mRNAs in SGs was not essential for mRNA targeting to SGs. However, ZBP1 knockdown induced a selective destabilization of target mRNAs during the ISR, whereas forced expression increased mRNA stability. Our results indicate that although targeting of mRNAs to SGs is nonspecific, the stabilization of mRNAs during cellular stress requires specific protein-mRNA interactions. These retain mRNAs in SGs and prevent premature decay in PBs. Hence, mRNA-binding proteins are essential for translational adaptation during cellular stress by modulating mRNA turnover.  相似文献   
50.
The targeting of many Sec substrates to the membrane-associated translocation pore requires the cytoplasmic signal recognition particle (SRP). In Eukarya and Bacteria it has been shown that membrane docking of the SRP-substrate complex occurs via the universally conserved SRP receptor (Sralpha/beta and FtsY, respectively). While much has been learned about the archaeal SRP in recent years, few studies have examined archaeal Sralpha/FtsY homologs. In the present study the FtsY homolog of Haloferax volcanii was characterized in its native host. Disruption of the sole chromosomal copy of ftsY in H. volcanii was possible only under conditions where either the full-length haloarchaeal FtsY or an amino-terminally truncated version of this protein lacking the A domain, was expressed in trans. Subcellular fractionation analysis of H. volcanii ftsY deletion strains expressing either one of the complementing proteins revealed that in addition to a cytoplasmic pool, both proteins cofractionate with the haloarchaeal cytoplasmic membrane. Moreover, membrane localization of the universally conserved SRP subunit SRP54, the key binding partner of FtsY, was detected in both H. volcanii strains. These analyses suggest that the H. volcanii FtsY homolog plays a crucial role but does not require its A domain for haloarchaeal growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号