首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   28篇
  2023年   1篇
  2021年   8篇
  2020年   3篇
  2019年   4篇
  2018年   5篇
  2017年   5篇
  2016年   5篇
  2015年   11篇
  2014年   8篇
  2013年   5篇
  2012年   9篇
  2011年   10篇
  2010年   5篇
  2009年   4篇
  2008年   2篇
  2007年   4篇
  2006年   1篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  1999年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1975年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
81.
Assortative mating is a reproductive strategy used by a diversity of animals, in which individuals choose a mate that shares similar characteristics. This mating strategy has the potential to promote the evolution of various sexual signals and has been a proposed mechanism driving and maintaining color variation in the anuran family Dendrobatidae. Most studies have examined this reproductive strategy in the polytypic poison frog, Oophaga pumilio, in the Bocas del Toro archipelago in Panama. Little attention, however, has been given to ancestral populations across this species’ mainland range, where dramatic color polytypism appears to lack. Additionally, most studies are exclusively experimental and investigate mate choice between allopatric populations, neglecting the behaviors of naturally occurring mates. This study observed natural mating pairs within a population of O. pumilio on mainland Costa Rica and tested the prediction that color phenotype of mating females and males would be correlated. Naturally occurring pairs were found to share similar coloration, suggesting that color assortative mating operates in nature, and in a mainland population. Our results indicate that coloration is an important trait in driving the natural mate choices of female O. pumilio, which provides valuable insight into realistic mate selection tactics of this dendrobatid frog.  相似文献   
82.
Adaptive differences across species’ ranges can have important implications for population persistence and conservation management decisions. Despite advances in genomic technologies, detecting adaptive variation in natural populations remains challenging. Key challenges in gene–environment association studies involve distinguishing the effects of drift from those of selection and identifying subtle signatures of polygenic adaptation. We used paired‐end restriction site‐associated DNA sequencing data (6,605 biallelic single nucleotide polymorphisms; SNPs) to examine population structure and test for signatures of adaptation across the geographic range of an iconic Australian endemic freshwater fish species, the Murray cod Maccullochella peelii. Two univariate gene–association methods identified 61 genomic regions associated with climate variation. We also tested for subtle signatures of polygenic adaptation using a multivariate method (redundancy analysis; RDA). The RDA analysis suggested that climate (temperature‐ and precipitation‐related variables) and geography had similar magnitudes of effect in shaping the distribution of SNP genotypes across the sampled range of Murray cod. Although there was poor agreement among the candidate SNPs identified by the univariate methods, the top 5% of SNPs contributing to significant RDA axes included 67% of the SNPs identified by univariate methods. We discuss the potential implications of our findings for the management of Murray cod and other species generally, particularly in relation to informing conservation actions such as translocations to improve evolutionary resilience of natural populations. Our results highlight the value of using a combination of different approaches, including polygenic methods, when testing for signatures of adaptation in landscape genomic studies.  相似文献   
83.
Variation in bumble bee color patterns is well‐documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red‐banded to black‐banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome‐wide differentiation between red‐ and black‐banded forms. Here, we instead focus on the closely related black‐banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus. We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase‐like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.  相似文献   
84.
Focused ultrasound (FUS) disruption of the blood-brain barrier (BBB) is an increasingly investigated technique for circumventing the BBB1-5. The BBB is a significant obstacle to pharmaceutical treatments of brain disorders as it limits the passage of molecules from the vasculature into the brain tissue to molecules less than approximately 500 Da in size6. FUS induced BBB disruption (BBBD) is temporary and reversible4 and has an advantage over chemical means of inducing BBBD by being highly localized. FUS induced BBBD provides a means for investigating the effects of a wide range of therapeutic agents on the brain, which would not otherwise be deliverable to the tissue in sufficient concentration. While a wide range of ultrasound parameters have proven successful at disrupting the BBB2,5,7, there are several critical steps in the experimental procedure to ensure successful disruption with accurate targeting. This protocol outlines how to achieve MRI-guided FUS induced BBBD in a rat model, with a focus on the critical animal preparation and microbubble handling steps of the experiment.  相似文献   
85.

Background

Coral reefs are facing increasing pressure from natural and anthropogenic stressors that have already caused significant worldwide declines. In January 2010, coral reefs of Florida, United States, were impacted by an extreme cold-water anomaly that exposed corals to temperatures well below their reported thresholds (16°C), causing rapid coral mortality unprecedented in spatial extent and severity.

Methodology/Principal Findings

Reef surveys were conducted from Martin County to the Lower Florida Keys within weeks of the anomaly. The impacts recorded were catastrophic and exceeded those of any previous disturbances in the region. Coral mortality patterns were directly correlated to in-situ and satellite-derived cold-temperature metrics. These impacts rival, in spatial extent and intensity, the impacts of the well-publicized warm-water bleaching events around the globe. The mean percent coral mortality recorded for all species and subregions was 11.5% in the 2010 winter, compared to 0.5% recorded in the previous five summers, including years like 2005 where warm-water bleaching was prevalent. Highest mean mortality (15%–39%) was documented for inshore habitats where temperatures were <11°C for prolonged periods. Increases in mortality from previous years were significant for 21 of 25 coral species, and were 1–2 orders of magnitude higher for most species.

Conclusions/Significance

The cold-water anomaly of January 2010 caused the worst coral mortality on record for the Florida Reef Tract, highlighting the potential catastrophic impacts that unusual but extreme climatic events can have on the persistence of coral reefs. Moreover, habitats and species most severely affected were those found in high-coral cover, inshore, shallow reef habitats previously considered the “oases” of the region, having escaped declining patterns observed for more offshore habitats. Thus, the 2010 cold-water anomaly not only caused widespread coral mortality but also reversed prior resistance and resilience patterns that will take decades to recover.  相似文献   
86.
87.
88.
IntroductionBoth sugar-sweetened beverage (SSB) intake and body mass index (BMI) are associated with elevated serum urate concentrations and gout risk. The aim of this study was to determine whether the associations of SSB intake with serum urate and gout are moderated by BMI.MethodThe effects of chronic SSB intake on serum urate and gout status were analysed in a large cross-sectional population study. The effects of an acute fructose load on serum urate and fractional excretion of uric acid (FEUA) were examined over 180 minutes in a short-term intervention study. In all analyses, the responses were compared in those with BMI <25 mg/kg2 (low BMI) and ≥25 mg/kg2 (high BMI).ResultsIn the serum urate analysis (n = 12,870), chronic SSB intake was associated with increased serum urate in the high BMI group, but not in the low BMI group (Pdifference = 3.6 × 10−3). In the gout analysis (n = 2578), chronic high SSB intake was associated with gout in the high BMI group, but not in the low BMI group (Pdifference = 0.012). In the acute fructose loading study (n = 76), serum urate was increased in the high BMI group at baseline and throughout the observation period (PBMI group <0.0001), but there were similar acute serum urate increases in both BMI groups in response to the fructose load (Pinteraction = 0.99). The baseline FEUA was similar between the two BMI groups. However, following the fructose load, FEUA responses in the BMI groups differed (Pinteraction <0.0001), with increased FEUA at 120 minutes and 180 minutes in the low BMI group and reduced FEUA at 60 minutes in the high BMI group.ConclusionsThese data suggest that BMI influences serum urate and gout risk in response to chronic SSB intake, and renal tubular uric acid handling in response to an acute fructose load. In addition to many other health benefits, avoidance of SSBs may be particularly important in those with overweight/obesity to prevent hyperuricaemia and reduce gout risk.

Trials registration

Australian Clinical Trials Registry ACTRN12610001036000. Registered 24 November 2010.  相似文献   
89.
Understanding evolutionary responses to variation in temperature and precipitation across species ranges is of fundamental interest given ongoing climate change. The importance of temperature and precipitation for multiple aspects of bumble bee (Bombus) biology, combined with large geographic ranges that expose populations to diverse environmental pressures, make these insects well‐suited for studying local adaptation. Here, we analyzed genome‐wide sequence data from two widespread bumble bees, Bombus vosnesenskii and Bombus vancouverensis, using multiple environmental association analysis methods to investigate climate adaptation across latitude and altitude. The strongest signatures of selection were observed in B. vancouverensis, but despite unique responses between species for most loci, we detected several shared responses. Genes relating to neural and neuromuscular function and ion transport were especially evident with respect to temperature variables, while genes relating to cuticle formation, tracheal and respiratory system development, and homeostasis were associated with precipitation variables. Our data thus suggest that adaptive responses for tolerating abiotic variation are likely to be complex, but that several parallels among species can emerge even for these complex traits and landscapes. Results provide the framework for future work into mechanisms of thermal and desiccation tolerance in bumble bees and a set of genomic targets that might be monitored for future conservation efforts.  相似文献   
90.
Hall MS  Katz LA 《Genetica》2011,139(5):677-684
The multiple species concepts currently in use by the scientific community (e.g. Morphological, Biological, Phylogenetic) are united in that they all aim to capture the process of divergence between populations. For example, the Biological Species Concept defines a species as a natural group of organisms that is reproductively isolated from other such groups. Here we synthesize nearly a century of research on the ciliate genus Paramecium that highlights the shortcomings of our prevailing notions on the nature of species. In this lineage, there is discordance between morphology, mating behavior, and genetics, features assumed to be correlated, at least after sufficient time has passed, under all species concepts. Intriguingly, epigenetic phenomena are well documented in ciliates where they influence features such as germline/soma differentiation and mating type determination. Consequently, we hypothesize that divergence within ciliate populations is due to a dynamic interaction between genetic and epigenetic factors. The growing list of examples of epigenetic phenomena that potentially impact speciation (i.e. by influencing the dynamics of sex chromosomes, fate of hybrids, zygotic drive and genomic conflicts) suggests that interactions between genetics and epigenetics may also drive divergence in other eukaryotic lineages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号